首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I Braakman  J Helenius    A Helenius 《The EMBO journal》1992,11(5):1717-1722
Addition of the reducing agent dithiothreitol (DTT) to the medium of living cells prevented disulfide bond formation in newly synthesized influenza hemagglutinin (HA0) and induced the reduction of already oxidized HA0 inside the ER. The reduced HA0 did not trimerize or leave the ER. When DTT was washed out, HA0 was rapidly oxidized, correctly folded, trimerized and transported to the Golgi complex. We concluded that protein folding and the redox conditions in the ER can be readily manipulated by addition of DTT without affecting most other cellular functions, that the reduced influenza HA0 remains largely unfolded, and that folding events that normally take place on the nascent HA0 chains can be delayed and induced post-translationally without loss in efficiency.  相似文献   

2.
We have characterized the association between the binding protein, BiP (also known as GRP 78), and misfolded forms of the influenza virus hemagglutinin precursor, HA0. BiP is a heat-shock-related protein that binds to unassembled immunoglobulin heavy chain and to a variety of misfolded proteins in the lumen of the ER. A small fraction (5-10%) of newly synthesized HA0 in CV-1 cells was found to be misfolded and retained in the ER. When glycosylation was blocked with tunicamycin, all of the HA0 produced was similarly misfolded. The misfolded HA0 was retained as relatively small (9-25-S) complexes associated with BiP. In these complexes the top domains of HA0 were correctly folded judging by their reactivity with monoclonal antibodies, but the polypeptides were cross-linked via anomalous interchain disulfides. The association with BiP was non-covalent and easily broken by warming to 37 degrees C or by adding ATP to the lysate. Pulse-chase experiments showed that HA0's self-association into complexes occurred immediately after synthesis and was followed rapidly by BiP association. The misfolded, BiP-associated HA0 was not transported to the plasma membrane but persisted as complexes in the ER for a long period of time before degradation (t1/2 = 6 h). The results suggested that BiP may be part of a quality control system in the ER and that one of its functions is to detect and retain misfolded proteins.  相似文献   

3.
The hemagglutinin (HA) of influenza virus is a homotrimeric integral membrane glycoprotein. It is cotranslationally inserted into the endoplasmic reticulum as a precursor called HA0 and transported to the cell surface via the Golgi complex. We have, in this study, investigated the kinetics and cellular location of the assembly reaction that results in HA0 trimerization. Three independent criteria were used for determining the formation of quaternary structure: the appearance of an epitope recognized by trimer-specific monoclonal antibodies; the acquisition of trypsin resistance, a characteristic of trimers; and the formation of stable complexes which cosedimented with the mature HA0 trimer (9S20,w) in sucrose gradients containing Triton X-100. The results showed that oligomer formation is a posttranslational event, occurring with a half time of approximately 7.5 min after completion of synthesis. Assembly occurs in the endoplasmic reticulum, followed almost immediately by transport to the Golgi complex. A stabilization event in trimer structure occurs when HA0 leaves the Golgi complex or reaches the plasma membrane. Approximately 10% of the newly synthesized HA0 formed aberrant trimers which were not transported from the endoplasmic reticulum to the Golgi complex or the plasma membrane. Taken together the results suggested that formation of correctly folded quaternary structure constitutes a key event regulating the transport of the protein out of the endoplasmic reticulum. Further changes in subunit interactions occur as the trimers move along the secretory pathway.  相似文献   

4.
U Tatu  C Hammond    A Helenius 《The EMBO journal》1995,14(7):1340-1348
Influenza hemagglutinin (HA) was used to analyze the stepwise folding and oligomeric assembly of glycoproteins in the early secretory pathway of living cells. In addition to mature trimers, six distinct maturation intermediates were identified. Of these, all the incompletely oxidized forms were located in the endoplasmic reticulum (ER) and associated with calnexin, a membrane-bound, lectin-like ER chaperone. Once fully oxidized, the HA dissociated from calnexin as a monomer, which rapidly became resistant to dithiothreitol (DTT) reduction. Part of these extensively folded molecules moved as monomers into the intermediate compartment between the ER and the Golgi complex. Assembly of homotrimers occurred without calnexin-involvement within the ER and in the intermediate compartment. When anchor-free HA molecules were analyzed, it was found that they reach the DTT-resistant monomeric conformation but fail to trimerize. Taken together, the results provide a definition and intracellular localization of several intermediates in the conformational maturation of HA, including the immediate precursor for trimer assembly.  相似文献   

5.
In an attempt to produce a protein that will allow determination of the native human immunodeficiency virus type 1 (HIV-1) gp120 (Env) structure in its trimeric state, we fused the globular head of gp120 to the stalk region of influenza virus A (X31) hemagglutinin (HA). The chimeric protein (EnvHA) has been expressed by using a recombinant vaccinia virus system, and its functional characteristics were determined. EnvHA is expressed as a 120- to 150-kDa protein that can oligomerize to form dimers and trimers. It retains the low-pH (5.2 to 5.4) requirement of X31-HA to trigger membrane fusion but, unlike X31-HA, it is not absolutely dependent on exogenously added trypsin for protein processing to release the HA2 fusion peptide. In terms of receptor binding the chimeric protein retains specificity for human CD4 but, in relation to the membrane fusion event, it appears to lose the Env coreceptor specificity of the parental HIV-1 strains: NL43 for CXCR4 and JRFL for CCR5. These properties suggest that stable, functional EnvHAs are being produced and that they may be exploited in terms of structural studies. Further, the potential of introducing the envHA genes into influenza viruses, by use of reverse genetics, and their use as a therapeutic vaccine for HIV are discussed.  相似文献   

6.
Exocytic organelles undergo profound reorganization during myoblast differentiation and fusion. Here, we analyzed whether glycoprotein processing and targeting changed during this process by using vesicular stomatitis virus (VSV) G protein and influenza virus hemagglutinin (HA) as models. After the induction of differentiation, the maturation and transport of the VSV G protein changed dramatically. Thus, only half of the G protein was processed and traveled through the Golgi, whereas the other half remained unprocessed. Experiments with the VSV tsO45 mutant indicated that the unprocessed form folded and trimerized normally and then exited the ER. It did not, however, travel through the Golgi since brefeldin A recalled it back to the ER. Influenza virus HA glycoprotein, on the contrary, acquired resistance to endoglycosidase H and insolubility in Triton X-100, indicating passage through the Golgi. Biochemical and morphological assays indicated that the HA appeared at the myotube surface. A major fraction of the Golgi-processed VSV G protein, however, did not appear at the myotube surface, but was found in intracellular vesicles that partially colocalized with the regulatable glucose transporter. Taken together, the results suggest that, during early myogenic differentiation, the VSV G protein was rerouted into developing, muscle-specific membrane compartments. Influenza virus HA, on the contrary, was targeted to the myotube surface.  相似文献   

7.
The hydropathy profile of hemagglutinin (HA) subunits HA1 and HA2 of influenza virus X31 and A/PR 8/34 is analyzed at different pH. At neutral pH (7.4) pronounced hydrophobic sequences of HA correspond to the N-terminus and the transmembrane spanning sequence of HA2. At pH 5.0 where influenza virus is known to fuse with biological membranes several hydrophobic sequences in the ectodomain exist which are comparable in both the hydrophobicity and length of the N-terminus of HA2. It is suggested that these hydrophobic stretches are important for the fusion complex, in addition to the N-terminal site of HA2.Abbreviations HA hemagglutinin - NHA2 N-terminus of HA2  相似文献   

8.
High level expression of the M2 ion channel protein of influenza virus inhibits the rate of intracellular transport of the influenza virus hemagglutinin (HA) and that of other integral membrane glycoproteins. HA coexpressed with M2 is properly folded, is not associated with GRP78- BiP, and trimerizes with the same kinetics as when HA is expressed alone. Analysis of the rate of transport of HA from the ER to the cis and medial golgi compartments and the TGN indicated that transport through the Golgi apparatus is delayed. Uncleaved HA0 was not expressed at the cell surface, and accumulation HA at the plasma membrane was reduced to 75-80% of control cells. The delay in intracellular transport of HA on coexpression of M2 was not observed in the presence of the M2-specific ion channel blocker, amantadine, indicating that the Golgi transport delay is due to the M2 protein ion channel activity equilibrating pH between the Golgi lumen and the cytoplasm, and not due to saturation of the intracellular transport machinery. The Na+/H+ ionophore, monensin, which also equilibrates pH between the Golgi lumen and the cytoplasm, caused a similar inhibition of intracellular transport as M2 protein expression did for HA and other integral membrane glycoproteins. EM data showed a dilation of Golgi cisternae in cells expressing the M2 ion channel protein. Taken together, the data suggest a similarity of effects of M2 ion channel activity and monensin on intracellular transport through the Golgi apparatus.  相似文献   

9.
Evidence is presented for an endogenous route of Ag processing for CD4+ T cell recognition of influenza hemagglutinin that requires obligatory traffic of de novo synthesized hemagglutinin across the lumen of the endoplasmic reticulum for processing in a cytosolic compartment. I-Ad-restricted T cell clones that recognize synthetic peptides corresponding to two distinct antigenic regions of the HA1 subunit, HA1 56-76 and HA1 177-199, are cytotoxic and, dependent on epitope specificity can recognize endogenously processed Ag and lyse class II+ target cells infected with a recombinant vaccinia-X31 HA virus. HA1 56-76 specific T cell clones fail to recognize (target cells infected with) influenza X31 viruses, containing a single residue change, HA1 63 Asp----Asn that introduces an oligosaccharide attachment site: Asp63Cys64Thr65. Recognition is restored, however, by tunicamycin treatment of mutant virus infected target cells. Inasmuch as N-glycosylation of nascent hemagglutinin polypeptides occurs in the lumen of the endoplasmic reticulum, this indicates a route of endogenous processing for hemagglutinin, requiring transport across the endoplasmic reticulum, which has been confirmed by the failure of CD4+ T cells to recognize a recombinant VACC-hemagglutinin virus in which the same single residue change, HA1 63 Asp----Asn has been introduced by site directed mutagenesis.  相似文献   

10.
Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments.  相似文献   

11.
Engel S  de Vries M  Herrmann A  Veit M 《FEBS letters》2012,586(3):277-282
Inclusion of proteins into membrane-rafts favours interactions required for virus assembly but has also been proposed to facilitate vesicular transport of proteins. The hemagglutinin (HA) of influenza virus contains a raft-targeting sequence in the outer leaflet of its transmembrane region. We report that its mutation enhances co-localization of HA with a cis-Golgi marker and retards Golgi-localized processing, such as acquisition of Endo-H resistant carbohydrates and proteolytic cleavage. In contrast, trimerization of the molecule in the ER and transport to the apical membrane were not affected. The second signal for raft-targeting, S-acylation at cytoplasmic cysteines, did not retard HA transport.  相似文献   

12.
The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. We have developed bacterial systems for expression and purification of properly folded functional hemagglutinin as a rapid response to emerging pandemic strains. A recombinant H5N1 (A/Vietnam/1203/2004) hemagglutinin globular domain (HA1) was produced in Escherichia coli under controlled redox refolding conditions. Importantly, the properly folded HA1(1-320), i.e., HA1 lacking amino acids 321 to 330, contained ≥75% functional oligomers without addition of foreign oligomerization sequence. Site-directed mutagenesis mapped the oligomerization signal to the HA1 N-terminal Ile-Cys-Ile residues at positions 3 to 5. The purified HA1 oligomers (but not monomers) bound fetuin and agglutinated red blood cells. Upon immunization of rabbits, the oligomeric HA1(1-320) elicited potent neutralizing antibodies against homologous and heterologous H5N1 viruses more rapidly than HA1(28-320) containing only monomers. Ferrets vaccinated with oligomeric HA1 (but not monomeric HA1 with the N terminus deleted) at 15 and 3 μg/dose were fully protected from lethality and weight loss after challenge with homologous H5N1 (A/Vietnam/1203/2004, clade 1) virus, as well as heterologous clade 2.2 H5N1 (A/WooperSwan/Mongolia/244/2005) virus. Protection was associated with a significant reduction in viral loads in the nasal washes of homologous and heterologous virus challenged ferrets. This is the first study that describes the presence of an N-terminal oligomerization sequence in the globular domain of influenza virus hemagglutinin. Our findings suggest that functional oligomeric rHA1-based vaccines can be produced efficiently in bacterial systems and can be easily upscaled in response to a pandemic influenza virus threat.  相似文献   

13.
Mutagenesis studies indicated that the three cytoplasmic cysteines of the influenza virus A/Japan/305/57 hemagglutinin (HA) are all palmitylated, but to an unequal extent. Replacement of all three cysteines abolished palmitylation, but affected neither HA biosynthesis nor function. Palmitate was not required for HA to be incorporated into virions.  相似文献   

14.
Eleven chimeric proteins were created in which the transmembrane, the cytoplasmic, or both topological domains of the influenza virus hemagglutinin (HA) were replaced with those from five other glycoproteins. All of the chimeric HAs reached the cell surface but appeared to differ in the degree to which they were stably folded. Comparisons of the rates of folding, passage into the Golgi, and arrival at the plasma membrane of wild-type HA and the chimeric proteins suggest that formation of a stable HA trimer is not an absolute requirement for export from the endoplasmic reticulum. In addition, there appear to be at least two steps at which the rate of transport can be altered during exocytosis, one occurring before and the other after the trimming of oligosaccharides by Golgi mannosidases. Certain of the chimeras differed from HA in their ability to pass through each of these steps. Replacement of the HA transmembrane domain with the analogous sequences from other proteins affected folding and transport of the chimeric HAs in ways that suggest that the HA transmembrane sequences form a specific structure in the membrane that differs from that formed by analogous sequences from the other proteins.  相似文献   

15.
Most membrane proteins are endocytosed through clathrin-coated pits via AP-2 adaptor complexes. However, little is known about the interaction of internalization signals with AP-2 in live cells in the absence of clathrin lattices. To investigate this issue, we employed cells cotransfected with pairs of antigenically distinct influenza hemagglutinin (HA) mutants containing different internalization signals of the YXXZ family. To enable studies on the possible association of the naturally trimeric HAs into higher order complexes via binding to AP-2, we exploited the inability of HAs from different influenza strains to form mutual trimers. Thus, we coexpressed HA pairs from different strains (Japan and X:31) bearing similar cytoplasmic tails mutated to include internalization signals. Using antibody-mediated immunofluorescence co-patching on live cells, we demonstrate that internalization-competent HA mutants form higher order complexes and that this clustering depends on the strength of the internalization signal. The clustering persisted in cells treated with hypertonic medium to disperse the clathrin lattices, as validated by co-immunoprecipitation experiments. The clustering of HAs bearing strong internalization signals appears to be mediated via binding to AP-2, as indicated by (i) the coprecipitation of alpha-adaptin with these HAs, even in hypertonically treated cells; (ii) the co-localization (after hypertonic treatment) of AP-2 with antibody-mediated patches of these mutants; and (iii) the dispersal of the higher order HA complexes following chlorpromazine treatment, which removes AP-2 from the plasma membrane. These results suggest that even in the absence of clathrin lattices, AP-2 exists in multivalent complexes capable of simultaneously binding several internalization signals from the same family.  相似文献   

16.
Three strains of influenza virus (H1, H2, and H3) exhibited similar characteristics in the ability of their hemagglutinin (HA) to induce membrane fusion, but the HAs differed in their susceptibility to inactivation. The extent of inactivation depended on the pH of preincubation and was lowest for A/Japan (H2 subtype), in agreement with previous studies (A. Puri, F. Booy, R. W. Doms, J. M. White, and R. Blumenthal, J. Virol. 64:3824-3832, 1990). While significant inactivation of X31 (H3 subtype) was observed at 37 degrees C at pH values corresponding to the maximum of fusion (about pH 5.0), no inactivation was seen at preincubation pH values 0.2 to 0.4 pH units higher. Surprisingly, low-pH preincubation under those conditions enhanced the fusion rates and extents of A/Japan as well as those of X31. For A/PR 8/34 (H1 subtype), neither a shift of the pH (to >5.0) nor a decrease of the temperature to 20 degrees C was sufficient to prevent inactivation. We provide evidence that the activated HA is a conformational intermediate distinct from the native structure and from the final structure associated with the conformational change of HA, which is implicated by the high-resolution structure of the soluble trimeric fragment TBHA2 (P. A. Bullough, F. M. Hughson, J. J. Skehel, and D. C. Wiley, Nature 371:37-43, 1994).  相似文献   

17.
U Tatu  I Braakman    A Helenius 《The EMBO journal》1993,12(5):2151-2157
Using influenza hemagglutinin (HA0) and vesicular stomatitis virus G protein as model proteins, we have analyzed the effects of dithiothreitol (DTT) on conformational maturation and transport of glycoproteins in the secretory pathway of living cells. While DTT caused reduction of folding intermediates and misfolded proteins in the endoplasmic reticulum (ER), it did not affect molecules that had already acquired a mature trimeric conformation, whether present in the ER or elsewhere. The conversion to DTT resistance was therefore a pre-Golgi event. Reduction of folding intermediates was dependent on the intactness of the ER and on metabolic energy, suggesting cooperativity between DTT and ER folding factors. DTT did not inhibit most cellular functions, including ATP synthesis and protein transport within the secretory pathway. The results established DTT as an effective tool for analyzing the folding and compartmental distribution of proteins with disulfide bonds.  相似文献   

18.
Brefeldin A (BFA) induces the retrograde transport of proteins from the Golgi complex (GC) to the endoplasmic reticulum (ER). It is uncertain, however, whether the drug completely merges the ER with post-ER compartments, or whether some of their elements remain physically and functionally distinct. We investigated this question by the use of monoclonal antibodies specific for monomers and trimers of the influenza virus hemagglutinin (HA). In untreated influenza virus-infected cells, monomers and trimers almost exclusively partition into the ER and GC, respectively. In BFA-treated cells, both monomers and trimers are detected in the ER by immunofluorescence. Cell fractionation experiments indicate, however, that whereas HA monomers synthesized in the presence of BFA reside predominantly in vesicles with a characteristic density of the ER, HA trimers are primarily located in lighter vesicles characteristic of post-ER compartments. Biochemical experiments confirm that in BFA-treated cells, trimers are more extensively modified than monomers by GC-associated enzymes. Additional immunofluorescence experiments reveal that in BFA-treated cells, HA monomers can exist in an ER subcompartment less accessible to trimers and, conversely, that trimers are present in a vesicular compartment less accessible to monomers. These findings favor the existence of a post-ER compartment for which communication with the ER is maintained in the presence of BFA and suggest that trimers cycle between this compartment and the ER, but have access to only a portion of the ER.  相似文献   

19.
The contribution of each of the seven asparagine-linked oligosaccharide side chains on the hemagglutinin of the A/Aichi/68 (X31) strain of influenza virus was assessed with respect to its effect on the folding, intracellular transport, and biological activities of the molecule. Twenty mutant influenza virus hemagglutinins were constructed and expressed, each of which had one or more of the seven glycosylation sites removed. Investigations of these mutant hemagglutinins indicated that (i) no individual oligosaccharide side chain is necessary or sufficient for the folding, intracellular transport, or function of the molecule, (ii) at least five oligosaccharide side chains are required for the X31 hemagglutinin molecule to move along the exocytic pathway to the plasma membrane, and (iii) mutant hemagglutinins having less than five oligosaccharide side chains form intracellular aggregates and are retained in the endoplasmic reticulum.  相似文献   

20.
Highly pathogenic H5N1 avian influenza viruses pose a debilitating pandemic threat. Thus, understanding mechanisms of antibody-mediated viral inhibition and neutralization escape is critical. Here, a robust yeast display system for fine epitope mapping of viral surface hemagglutinin (HA)-specific antibodies is demonstrated. The full-length H5 subtype HA (HA0) was expressed on the yeast surface in a correctly folded conformation, determined by binding of a panel of extensively characterized neutralizing human monoclonal antibodies (mAbs). These mAbs target conformationally-dependent epitopes of influenza A HA, which are highly conserved across H5 clades and group 1 serotypes. By separately displaying HA1 and HA2 subunits on yeast, domain mapping of two anti-H5 mAbs, NR2728 and H5-2A, localized their epitopes to HA1. These anti-H5 mAb epitopes were further fine mapped by using a library of yeast-displayed HA1 mutants and selecting for loss of binding without prior knowledge of potential contact residues. By overlaying key mutant residues that impacted binding onto a crystal structure of HA, the NR2728 mAb was found to interact with a fully surface-exposed contiguous patch of residues at the receptor binding site (RBS), giving insight into the mechanism underlying its potent inhibition of virus binding. The non-neutralizing H5-2A mAb was similarly mapped to a highly conserved H5 strain-specific but poorly accessible location on a loop at the trimer HA interface. These data further augment our toolchest for studying HA antigenicity, epitope diversity and accessibility in response to natural and experimental influenza infection and vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号