首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lactobacillus sakei strain 0-1 produces an exopolysaccharide (EPS) consisting of glucose and rhamnose in a ratio of 3:2. As part of a biochemical and molecular analysis of the EPS biosynthetic pathway in L. sakei strain 0-1, we have isolated a random set of EPS-negative mutants. Following treatment of cells with the mutagen ethylmethane sulfonic acid, a total of 10 mutants were identified that lacked the clear ropy appearance of wild-type colonies on agar plates. Their characterization revealed that eight mutants had completely lost the ability to synthesize the normal EPS. Six of these mutants lacked activities of enzymes involved in the biosynthesis of dTDP-rhamnose, required for EPS production. Only mutant strains 12 and 20 were directly affected in EPS synthesis. Strain 12 synthesized EPS with a different sugar composition, however. Interestingly, strain 12 showed temperature-dependent EPS synthesis, with the highest amounts synthesized at 12°C, and low amounts at the optimal temperature for growth (30°C). Two mutants were in fact EPS-positive, producing the normal EPS, but displayed a different cell morphology (elongated cells), indicating a modification in cell wall synthesis.  相似文献   

2.
We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was realized by using a described isogenic L. lactis mutant with reduced enzyme activities or by controlled expression of the well-characterized genes for phosphoglucomutase or glucokinase from Escherichia coli or Bacillus subtilis, respectively. The role of decreased metabolic flux was studied in L. lactis strains with decreased phosphofructokinase activities. The concomitant reduction of the activities of phosphofructokinase and other enzymes encoded by the las operon (lactate dehydrogenase and pyruvate kinase) resulted in significant changes in the concentrations of sugar-phosphates. In contrast, a >25-fold overproduction of glucokinase resulted in 7-fold-increased fructose-6-phosphate levels and 2-fold-reduced glucose-1-phosphate and glucose-6-phosphate levels. However, these increased sugar-phosphate concentrations did not affect the levels of sugar nucleotides. Finally, an approximately 100-fold overproduction of phosphoglucomutase resulted in 5-fold-increased levels of both UDP-glucose and UDP-galactose. While the increased concentrations of sugar-phosphates or sugar nucleotides did not significantly affect the production of exopolysaccharides, they demonstrate the metabolic flexibility of L. lactis.  相似文献   

3.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

4.
Sixteen exopolysaccharide (EPS)-producing Lactococcus lactis strains were analyzed for the chemical compositions of their EPSs and the locations, sequences, and organization of the eps genes involved in EPS biosynthesis. This allowed the grouping of these strains into three major groups, representatives of which were studied in detail. Previously, we have characterized the eps gene cluster of strain NIZO B40 (group I) and determined the function of three of its glycosyltransferase (GTF) genes. Fragments of the eps gene clusters of strains NIZO B35 (group II) and NIZO B891 (group III) were cloned, and these encoded the NIZO B35 priming galactosyltransferase, the NIZO B891 priming glucosyltransferase, and the NIZO B891 galactosyltransferase involved in the second step of repeating-unit synthesis. The NIZO B40 priming glucosyltransferase gene epsD was replaced with an erythromycin resistance gene, and this resulted in loss of EPS production. This epsD deletion was complemented with priming GTF genes from gram-positive organisms with known function and substrate specificity. Although no EPS production was found with priming galactosyltransferase genes from L. lactis or Streptococcus thermophilus, complementation with priming glucosyltransferase genes involved in L. lactis EPS and Streptococcus pneumoniae capsule biosynthesis could completely restore or even increase EPS production in L. lactis.  相似文献   

5.
AIMS: To determine the role of the EpsA, EpsB, and EpsC proteins encoded at the 5'-end of the exopolysaccharide (EPS) gene cluster in regulation of EPS production in Lactococcus lactis. METHODS AND RESULTS: Deletion and paralog-replacement mutants of epsABCD were used to determine the function of EpsA, EpsB and EpsC in EPS production and polymer chain length determination in L. lactis. EpsA and EpsB appeared to be essential for EPS biosynthesis in L. lactis, while deletion of the phosphatase (EpsC) only had a minor effect on the EPS production level. Determination of the phosphorylation state of EpsB and analysis of a C-terminally truncated EpsB variant indicate that EPS biosynthesis in L. lactis is driven by a nonphosphorylated form of EpsB. CONCLUSIONS: The data presented here show that in L. lactis, EPS production is under control of a phosphoregulatory system and that EPS biosynthesis correlates with an unphosphorylated EpsB. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides molecular understanding of polysaccharide production in L. lactis that could eventually enable novel approaches to control EPS production by lactic acid bacteria during industrial fermentation processes.  相似文献   

6.
7.
We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was realized by using a described isogenic L. lactis mutant with reduced enzyme activities or by controlled expression of the well-characterized genes for phosphoglucomutase or glucokinase from Escherichia coli or Bacillus subtilis, respectively. The role of decreased metabolic flux was studied in L. lactis strains with decreased phosphofructokinase activities. The concomitant reduction of the activities of phosphofructokinase and other enzymes encoded by the las operon (lactate dehydrogenase and pyruvate kinase) resulted in significant changes in the concentrations of sugar-phosphates. In contrast, a >25-fold overproduction of glucokinase resulted in 7-fold-increased fructose-6-phosphate levels and 2-fold-reduced glucose-1-phosphate and glucose-6-phosphate levels. However, these increased sugar-phosphate concentrations did not affect the levels of sugar nucleotides. Finally, an ~100-fold overproduction of phosphoglucomutase resulted in 5-fold-increased levels of both UDP-glucose and UDP-galactose. While the increased concentrations of sugar-phosphates or sugar nucleotides did not significantly affect the production of exopolysaccharides, they demonstrate the metabolic flexibility of L. lactis.  相似文献   

8.
9.
Over the last years, important advances have been made in the study of the production of exopolysaccharides (EPS) by several lactic acid bacteria, including Lactococcus lactis. From different EPS-producing lactococcal strains the specific eps gene clusters have been characterised. They contain eps genes, which are involved in EPS repeating unit synthesis, export, polymerisation, and chain length determination. The function of the glycosyltransferase genes has been established and the availability of these genes opened the way to EPS engineering. In addition to the eps genes, biosynthesis of EPS requires a number of housekeeping genes that are involved in the metabolic pathways leading to the EPS-building blocks, the nucleotide sugars. The identification and characterisation of several of these housekeeping genes (galE, galU, rfbABCD) allows the design of metabolic engineering strategies that should lead to increased EPS production levels by L. lactis. Finally, model developme nt has been initiated in order to predict the physicochemical consequences of the addition of a EPS to a product.  相似文献   

10.
The pab genes for para-aminobenzoic acid (pABA) biosynthesis in Lactococcus lactis were identified and characterized. In L. lactis NZ9000, only two of the three genes needed for pABA production were initially found. No gene coding for 4-amino-4-deoxychorismate lyase (pabC) was initially annotated, but detailed analysis revealed that pabC was fused with the 3' end of the gene coding for chorismate synthetase component II (pabB). Therefore, we hypothesize that all three enzyme activities needed for pABA production are present in L. lactis, allowing for the production of pABA. Indeed, the overexpression of the pABA gene cluster in L. lactis resulted in elevated pABA pools, demonstrating that the genes are involved in the biosynthesis of pABA. Moreover, a pABA knockout (KO) strain lacking pabA and pabBC was constructed and shown to be unable to produce folate when cultivated in the absence of pABA. This KO strain was unable to grow in chemically defined medium lacking glycine, serine, nucleobases/nucleosides, and pABA. The addition of the purine guanine, adenine, xanthine, or inosine restored growth but not the production of folate. This suggests that, in the presence of purines, folate is not essential for the growth of L. lactis. It also shows that folate is not strictly required for the pyrimidine biosynthesis pathway. L. lactis strain NZ7024, overexpressing both the folate and pABA gene clusters, was found to produce 2.7 mg of folate/liter per optical density unit at 600 nm when the strain was grown on chemically defined medium without pABA. This is in sharp contrast to L. lactis strains overexpressing only one of the two gene clusters. Therefore, we conclude that elevated folate levels can be obtained only by the overexpression of folate combined with the overexpression of the pABA biosynthesis gene cluster, suggesting the need for a balanced carbon flux through the folate and pABA biosynthesis pathway in the wild-type strain.  相似文献   

11.
There is increasing evidence that in several fungi, rhamnose-containing glycans are involved in processes that affect host-pathogen interactions, including adhesion, recognition, virulence, and biofilm formation. Nevertheless, little is known about the pathways for the synthesis of these glycans. We show that rhamnose is present in glycans isolated from the rice pathogen Magnaporthe grisea and from the plant pathogen Botryotinia fuckeliana. We also provide evidence that these fungi produce UDP-rhamnose. This is in contrast to bacteria where dTDP-rhamnose is the activated form of this sugar. In bacteria, formation of dTDP-rhamnose requires three enzymes. Here, we demonstrate that in fungi only two genes are required for UDP-Rha synthesis. The first gene encodes a UDP-glucose-4,6-dehydratase that converts UDP-glucose to UDP-4-keto-6-deoxyglucose. The product was shown by time-resolved (1)H NMR spectroscopy to exist in solution predominantly as a hydrated form along with minor amounts of a keto form. The second gene encodes a bifunctional UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase that converts UDP-4-keto-6-deoxyglucose to UDP-rhamnose. Sugar composition analysis and gene expression studies at different stages of growth indicate that the synthesis of rhamnose-containing glycans is under tissue-specific regulation. Together, our results provide new insight into the formation of rhamnose-containing glycans during the fungal life cycle. The role of these glycans in the interactions between fungal pathogens and their hosts is discussed. Knowledge of the metabolic pathways involved in the formation of rhamnose-containing glycans may facilitate the development of drugs to combat fungal diseases in humans, as to the best of our knowledge mammals do not make these types of glycans.  相似文献   

12.
Streptococcus thermophilus Sfi6 produces an exopolysaccharide (EPS) composed of glucose, galactose and N-acetylgalactosamine in the molar ratio of 1:2:1. The genes responsible for the EPS biosynthesis have been isolated previously and found to be clustered in a 14.5 kb region encoding 13 genes. Transfer of this gene cluster into a non-EPS-producing heterologous host, Lactococcus lactis MG1363, yielded an EPS with a similar high molecular weight, but a different structure from the EPS from the native host. The structure of the recombinant EPS was determined by means of 1H homonuclear and 1H-13C heteronuclear two-dimensional nuclear magnetic resonance (NMR) spectra and was found to be --> 3)-beta-D-Glcp-(1 --> 3)-alpha-D-Galp-(1 --> 3)-beta-D-Galp-(1 --> as opposed to --> 3)[alpha-D-Galp-(1 --> 6)]-beta-D-Glcp-(1 --> 3)-alpha-D-GalpNAc-(1 --> 3)-beta-D-Galp-(1 --> for the wild-type S. thermophilus Sfi6. Furthermore, L. lactis MG1363 (pFS101) was also lacking a UDP-N-acetylglucosamine C4-epimerase activity, which would provide UDP-GalNAc for a GalNAc incorporation into the EPS and probably caused the substitution of GalNAc by Gal in the recombinant EPS. This modification implies that (i) bacterial glycosyltransferases could potentially have multiple specificities for the donor and the acceptor sugar molecule; and (ii) the repeating unit polymerase can recognize and polymerize a repeating unit that differs in the backbone as well as in the side-chain from its native substrate.  相似文献   

13.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

14.
15.
The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of alpha-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03.  相似文献   

16.
The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03.  相似文献   

17.
AIMS: To determine optimal exopolysaccharide (EPS) production conditions of the mesophilic lactic acid bacterium strain Lactobacillus sakei 0-1 and to detect possible links between EPS yields and the activity of relevant enzymes. METHODS AND RESULTS: Fermentation experiments at different temperatures using either glucose or lactose were carried out. EPS production took place during the exponential growth phase. Low temperatures, applying glucose as carbohydrate source, resulted in the best bacterial growth, the highest amounts of EPS and the highest specific EPS production. Activities of 10 important enzymes involved in the EPS biosynthesis and the energy formation of Lact. sakei 0-1 were measured. The obtained results revealed that there is a clear link for some enzymes with EPS biosynthesis. It was also demonstrated clearly that the presence of rhamnose in the EPS building blocks is due to high activities of the enzymes involved in the rhamnose synthetic branch. CONCLUSION: EPS production in Lact. sakei 0-1 is growth-associated and displays primary metabolite kinetics. Glucose as carbohydrate source and low temperatures enhance the EPS production. The enzymes involved in the biosynthesis of the activated sugar nucleotides play a major role in determining the monomeric composition of the synthesized EPS. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed results contribute to a better understanding of the physiological factors influencing EPS production and the key enzymes involved in EPS biosynthesis by Lact. sakei.  相似文献   

18.
19.
从EcoliBL21克隆到UDP-葡萄糖焦磷酸化酶(UGPase)基因galU,与pNZ8048载体连接构建重组表达质粒pNZ8048-galU,进而导入乳酸乳球菌L.lactisL18中,得到重组菌L.lactisL18/pNZS048-galU,研究galU插入对该菌产生胞外多糖的影响。结果显示,在含葡萄糖和乳糖(20:20g/L)的MRS培养基中,重组菌L.lactisL18/pNZ8048-galU在30℃,pH6.5的条件下培养26h,EPS产量最高,为1489.54mg/L;而相同条件下,L.lactisL18培养28h产量最高,为848.93mg/L。二者相比,EPS产量增加了1.75倍。  相似文献   

20.
The relationships between glucose metabolism and exopolysaccharide (EPS) production in a Lactococcus lactis strain containing the EPS gene cluster (Eps(+)) and in nonproducer strain MG5267 (Eps(-)) were characterized. The concentrations of relevant phosphorylated intermediates in EPS and cell wall biosynthetic pathways or glycolysis were determined by (31)P nuclear magnetic resonance. The concentrations of two EPS precursors, UDP-glucose and UDP-galactose, were significantly lower in the Eps(+) strain than in the Eps(-) strain. The precursors of the peptidoglycan pathway, UDP-N-acetylglucosamine and UDP-N-acetylmuramoyl-pentapeptide, were the major UDP-sugar derivatives detected in the two strains examined, but the concentration of the latter was greater in the Eps(+) strain, indicating that there is competition between EPS synthesis and cell growth. An intermediate in biosynthesis of histidine and nucleotides, 5-phosphorylribose 1-pyrophosphate, accumulated at concentrations in the millimolar range, showing that the pentose phosphate pathway was operating. Fructose 1,6-bisphosphate and glucose 6-phosphate were the prominent glycolytic intermediates during exponential growth of both strains, whereas in the stationary phase the main metabolites were 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvate. The activities of relevant enzymes, such as phosphoglucose isomerase, alpha-phosphoglucomutase, and UDP-glucose pyrophosphorylase, were identical in the two strains. (13)C enrichment on the sugar moieties of pure EPS showed that glucose 6-phosphate is the key metabolite at the branch point between glycolysis and EPS biosynthesis and ruled out involvement of the triose phosphate pool. This study provided clues for ways to enhance EPS production by genetic manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号