首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the metabolism of aminoacyl-p-nitroanilides by rat mammary tissue isolated from rats during late pregnancy, peak lactation and late lactation. The rate of hydrolysis depended upon the chemical nature of the aminoacyl-p-nitroanilide compound and the physiological state of the donor animals. Thus, mammary tissue isolated from rats during late pregnancy and peak lactation hydrolysed aminoacyl-p-nitroanilides in the order L-met-p-nitroanilide=L-leu-p-nitroanilide>L-lys-p-nitroanilide>gamma- glu-p-nitroanilide. The order of activity was the same for mammary tissue taken from rats during late lactation except that L-lys-p-nitroanilide was hydrolysed at the same rate as the neutral aminoacyl-p-nitroanilides. Mammary tissue from peak lactating rats also hydrolysed alpha-L-glu-p-nitroanilide and alpha-L-asp-p-nitroanilide but to a lesser extent than the other compounds tested. The anionic aminoacyl-p-nitroanilides were able to trans-stimulate D-aspartate efflux from mammary tissue explants and the perfused mammary gland via the high-affinity anionic amino acid carrier. The clearance of gly-L-phe by the perfused mammary gland was markedly inhibited by L-phe. The results suggest that mammary tissue expresses a variety of dipeptidases at the basolateral aspect of the mammary epithelium which are capable of hydrolysing peptides extracellularly. These enzymes may be important for providing amino acids for milk protein synthesis and/or inactivating signal peptides.  相似文献   

2.
L-glutamate was transported into mammary tissue via Na(+)-dependent system XAG- that strongly interacted with both D- and L-isomers of aspartate but only with L-isomer of glutamate. Replacement of Cl- by gluconate from the extracellular medium did not affect the uptake of L-glutamate. Although neutral amino acids weakly inhibited the uptake of L-glutamate, there was no evidence for the heterogeneity of anionic amino acid transport system. The XAG- system was inhibited by sulfhydryl group blocking reagent N-ethylmalemide. Low pH (6) partially inhibited the uptake by L-glutamate by mammary tissue. Prior loading of mammary tissue with L-glutamate slightly down regulated its uptake. Culturing pregnant mouse mammary tissue explants in vitro in the presence of lactogenic hormones (insulin plus cortisol plus prolactin) did not affect appreciably the uptake of L-glutamate.  相似文献   

3.
Amino acid transport via system A plays an important role during lactation, promoting the uptake of small neutral amino acids, mainly alanine and glutamine. However, the regulation of gene expression of system A [sodium-coupled neutral amino acid transporter (SNAT)2] in mammary gland has not been studied. The aim of the present work was to understand the possible mechanisms of regulation of SNAT2 in the rat mammary gland. Incubation of gland explants in amino acid-free medium induced the expression of SNAT2, and this response was repressed by the presence of small neutral amino acids or by actinomycin D but not by large neutral or cationic amino acids. The half-life of SNAT2 mRNA was 67 min, indicating a rapid turnover. In addition, SNAT2 expression in the mammary gland was induced by forskolin and PMA, inducers of PKA and PKC signaling pathways, respectively. Inhibitors of PKA and PKC pathways partially prevented the upregulation of SNAT2 mRNA during adaptive regulation. Interestingly, SNAT2 mRNA was induced during pregnancy and to a lesser extent at peak lactation. beta-Estradiol stimulated the expression of SNAT2 in mammary gland explants; this stimulation was prevented by the estrogen receptor inhibitor ICI-182780. Our findings clearly demonstrated that the SNAT2 gene is regulated by multiple pathways, indicating that the expression of this amino acid transport system is tightly controlled due to its importance for the mammary gland during pregnancy and lactation to prepare the gland for the transport of amino acids during lactation.  相似文献   

4.
5.
Transport of cystine in isolated rat hepatocytes in primary culture   总被引:6,自引:0,他引:6  
Uptake of cystine and factors affecting the transport were investigated in adult rat hepatocytes in primary monolayer culture. The cystine uptake was initially mediated by Na+-dependent route(s). However, the activity of Na+-dependent uptake decreased markedly during the culture, and Na+-independent uptake emerged with a lag period of 12 h in response to insulin and dexamethasone in the culture medium. After 48 h in culture, cystine was mainly transported into the cells through this Na+-independent route. The action of insulin and dexamethasone on the enhancement of the Na+-independent uptake was apparently additive, and the enhancement was completely blocked by cycloheximide or actinomycin D. Emergence of the Na+-independent uptake of cystine was also regulated by cell density; at lower density, the uptake tended to be elevated. The transport of cystine through the Na+-independent system was pH sensitive and was inhibited by some anionic amino acids, such as glutamate and homocysteate, but not by aspartate. These results suggest that the emerging system is similar to the ones reported in fibroblasts and in some hepatoma cell lines; the anionic form of cystine is transported through the system.  相似文献   

6.
Negatively charged amino acids, such as aspartate and glutamate, were selected as substrates by low- and high-Km components of mediated Na(+)-dependent transport in preimplantation mouse blastocysts. These and other relatively small anionic amino acids with two carbon atoms between the negatively charged groups (or up to three carbon atoms when the groups were both carboxyl groups) interacted strongly with the low-Km component of transport, whereas larger anionic amino acids interacted weakly or not at all. The low-Km system was also stereoselective except in the case of aspartate. Moreover, transport was Cl(-)-dependent and slower at pH values outside the range 5.6-7.4. L-Aspartate, D-aspartate and L-glutamate each interacted strongly with the low-Km component of transport with Km values for transport nearly equal to their Ki values for inhibition of transport of one of the other amino acids. By these criteria, the low-Km component of transport of anionic amino acids in blastocysts appears to be the same as the familiar system X-AG that is present in other types of mammalian cells. In contrast, the high-Km component of transport in blastocysts preferred L-aspartate to L-glutamate, whereas the reverse is true for fibroblasts. Therefore, transport of anionic amino acids in blastocysts may occur via at least one process that has not been described in other types of cells. Roughly half of mediated glutamate and aspartate transport in blastocysts may occur via the high-Km component of transport at the concentrations of these amino acids that may be present in uterine secretions.  相似文献   

7.
Amino acid and K(+) transport during development has been investigated in hepatocyte monolayer cultures with either alpha-amino[1-(14)C]isobutyrate or (86)Rb(+) used as a tracer for K(+). Parenchymal cells from neo- and post-natal rat livers have been isolated by an improved non-perfusion technique [Bellemann, Gebhardt & Mecke (1977)Anal.Biochem.81, 408-415], and the resulting hepatocyte suspensions purified from non-hepatocytes before inoculation. In the presence of Na(+) (Na(+)-dependent component), the rates of amino acid uptake in neonatal hepatocytes were markedly enhanced compared with cells from 30-day-old rats. When Na(+) was replaced by choline (Na(+)-independent component) the accumulation of alpha-aminoisobutyrate was decreased and it was not affected by the age of the animals. Kinetic analysis of Na(+)-dependent alpha-aminoisobutyrate transport revealed the existence of a high-affinity low-K(m) component (K(m)0.91mm) with a V(max.) of 2.44nmol/mg of protein per 4min, which later declined gradually with progressive development. Rates of Rb(+) transport were concomitantly enhanced in neonatal hepatocytes and thereafter declined with postnatal age. The increased Rb(+) influx was effectively inhibited by ouabain and reflected elevated activity of the electrogenic Na(+)/K(+)-pump during early stages of development. Kinetic evaluation of the enhanced rates of Rb(+) uptake indicates multiple and co-operative binding sites of the enzyme involved in the Rb(+) uptake, and the transport system is positively co-operative (the Hill coefficient h is >1.0). In short, amino acid transport in neonatal rat hepatocytes is increased as a result of an existing low-K(m) component for the Na(+)-dependent alpha-aminoisobutyrate uptake, which endows the hepatocytes with a high capability for concentrating amino acids at low ambient values. The concomitant enhancement of K(+) transport reflects changes in the electrochemical gradient for Na(+) across the hepatocellular membrane and, along with this, presumably alterations in the membrane potential; the latter might be the driving force for the enhanced alpha-aminoisobutyrate transport in the alanine-preferring system during postnatal age.  相似文献   

8.
Treatment of cultured rat hepatocytes with certain amino acids stimulates the activity of the System N transporter. The present report investigates the mechanism by which the stimulatory amino acids elicit their effect. Activation of System N-mediated transport by amino acids is rapid, cycloheximide-insensitive, and involves neither trans-stimulation nor recruitment of additional carriers to the plasma membrane. In addition, the activation is Na(+)-dependent, supporting the related observation that the most effective stimulatory amino acids are substrates of Na(+)-dependent transport Systems A, ASC, and N whereas substrates of Na(+)-independent System L and non-amino acid metabolites are ineffective. The data suggest that active accumulation of amino acids via Na(+)-dependent carriers is necessary for the activation to occur. The amino acid-dependent stimulation is blocked in a concentration-dependent manner by increasing extracellular K+. Treatment of hepatocytes with an amino acid such as asparagine causes cell swelling and stimulation of System N activity; both of these effects are reduced by hypertonic media. Furthermore, swelling of rat hepatocytes with hypotonic media mimics the System N-stimulatory effects of asparagine. Among the Na(+)-dependent amino acid transport systems present in rat hepatocytes, System N is stimulated preferentially by amino acid-containing or hypotonic media. Collectively, these results demonstrate that cell swelling is a prerequisite for the amino acid-dependent activation of the hepatic System N transporter.  相似文献   

9.
The intestine is an important target organ for insulin-like growth factor-I (IGF-I), an anabolic hormone synthesized in the liver upon growth hormone (GH) stimulation. Levels of IGF-I are reduced in cirrhosis, and altered GH/IGF-I axis may contribute to malnutrition in cirrhotic patients. Our aim was to study Na(+)-dependent jejunal transport of amino acids (L-leucine, L-proline, L-glutamic acid, and L-cysteine) in cirrhotic rats and to analyze the effect of IGF-I on this function. IGF-I or saline was administered for 2 wk to rats with CCl(4)-induced cirrhosis and saline was administered to healthy control rats. Transport of amino acids was assessed in brush-border membrane vesicles (BBMV) using (14)C- or (35)S-labeled amino acids, and the kinetic constants V(max) and K(t) were determined. Na(+)-independent uptake of L-leucine, L-proline, L-glutamic acid, and L-cysteine by BBMV was similar in all groups. Na(+)-dependent uptake of all four amino acids was significantly diminished in cirrhotic rats compared with both controls and IGF-I-treated cirrhotic rats. The latter two groups exhibited similar V(max) and K(t), whereas untreated cirrhotic rats had reduced V(max) and increased K(t) compared with normal controls and IGF-I-treated cirrhotic animals. In conclusion, the transport of all four tested amino acids by BBMV is impaired in cirrhotic rats, and low doses of IGF-I can correct this defect.  相似文献   

10.
The characteristics of the transport systems of L-glutamine in lactating mouse mammary gland have been studied. L-glutamine uptake was mediated by three Na+-dependent and one Na+-independent systems. The 2-(methylamino)isobutyric acid-sensitive component of Na+-dependent uptake exhibited the usual characteristics of system A. The other two Na+-dependent systems, which we have named BCI(-)-dependent and BCl(-)-independent, are the new systems identified. These are broad specificity systems and were discriminated on the basis of inhibition analysis, Cl- dependency and the effect of preloading mammary tissue with amino acids. While L-aspargine inhibited the uptake of L-glutamine via both these broad specificity systems, L-homoserine inhibited the uptake of L-glutamine via only BCl(-)-dependent system. The uptake of L-glutamine via the BCl(-)-independent system was upregulated by preloading mammary tissue with L-serine, while BCl(-)-dependent system was unaffected. The Na+-independent uptake of L-glutamine was inhibited by 2-aminobicyclo-(2,2,1)heptane carboxylic acid and other neutral amino acids, and identified as the system L.  相似文献   

11.
The substrate specificity of the rat mammary tissue high affinity, Na+-dependent anionic amino acid transport system has been investigated using explants and the perfused mammary gland. d-Aspartate appears to be transported via the high affinity, Na+-dependent l-glutamate carrier. Thus, d-aspartate transport by rat mammary tissue was Na+-dependent and saturable with respect to extracellular d-aspartate with a Km and Vmax of 32.4 μM and 49.0 nmol/2 min per g of cells respectively. The uptake of d-aspartate by mammary explants was cis-inhibited by l-glutamate and l-aspartate, but not by d-glutamate. l-glutamate uptake by mammary tissue explants was cis-inhibited by β-glutamate, l-cysteate, l-cysteine sulfinate and dihydrokainate but not by dl-α-aminoadipate. In addition, dihydrokainate, but not dl-α-aminoadipate inhibited d-aspartate and l-glutamate uptake by the perfused gland. d-Aspartate efflux from mammary tissue explants was trans-accelerated by external l-glutamate in a dose-dependent fashion (50-500 μM). The effect of l-glutamate on d-aspartate efflux was dependent on the presence of extracellular Na+. d-Aspartate, l-aspartate and l-cysteine sulfinate (at 500 μM) also markedly trans-stimulated d-aspartate efflux from mammary tissue explants. In contrast, l-cysteine, d-glutamate, l-leucine, dihydrokainate and dl-α-aminoadipate were either weak stimulators of d-aspartate efflux or were without effect. d-Aspartate efflux from the perfused mammary gland was trans-stimulated by l-glutamate but not by d-glutamate and only weakly by l-cysteine (all at 500 μM). It appears that the mammary tissue high affinity anionic amino acid carrier can operate in the exchange mode with a similar substrate specificity to that of the co-transport mode.  相似文献   

12.
V J Balcar  Y Li 《Life sciences》1992,51(19):1467-1478
Characteristics of high affinity uptake of L-glutamate are examined in order to evaluate the possible use of the uptake of [3H]L-glutamate, [3H]L-aspartate or any other suitable [3H]-labelled substrate as a marker for glutamatergic and aspartergic synapses in autoradiographic studies in the mammalian brain. Review of data on substrate specificity indicates the presence of at least two high affinity uptake systems specific for acidic amino acids in the central nervous tissue; one which takes up L-glutamate and L-aspartate and the other which is selective for L-glutamate only. Studies on ionic requirements, too, point to the existence of at least two distinct uptake systems with high affinity for L-glutamate. The Na(+)-dependent uptake system(s) handle(s) both L-glutamate and L-aspartate whereas the Na(+)-independent uptake system(s) show(s) selectivity for L-glutamate only. Available data do not favour the Na(+)-dependent binding of [3H]D-aspartate to thaw-mounted sections of frozen brain tissue as a suitable marker for glutamatergic/aspartergic synaptic nerve endings. However, there are reasons--such as the results of lesion studies and the existence of uptake sites which have a higher affinity for L-aspartate than for D-aspartate--to suggest that Na(+)-dependent binding of [3H]L-aspartate, rather than that of [3H]D-aspartate, should be further investigated as a possible marker for the glutamatergic/aspartergic synapses in the autoradiographic studies using sections of frozen brain.  相似文献   

13.
Neutral amino acid transport in isolated rat pancreatic islets   总被引:1,自引:0,他引:1  
The neutral amino acid transport systems of freshly isolated rat pancreatic islets have been studied by first examining the transport of L-alanine and the nonmetabolizable analogue 2-(methylamino)isobutyric acid (MeAIB). By comparing the uptake of MeAIB and L-alanine for their pH dependency profile, choline and Li+ substitution for Na+, tolerance to N-methylation, and competition with other amino acids, the existence in pancreatic islets of both A and ASC amino acid transport systems was established. The systems responsible for the inward transport of five natural amino acids was studied using competition analysis and Na+ dependency of uptake. These studies defined three neutral amino acid transport systems: A and ASC (Na+-dependent) and L (Na+-independent). L-Proline entered rat islet cells mainly by system A; L-leucine by the Na+-independent system L. The uptake of L-alanine, L-serine, and L-glutamine was shared by systems ASC and L, the participation of system A being negligible for these three amino acids. An especially broad substrate specificity for systems L and ASC is therefore suggested for the rat pancreatic islet cells. The regulation of amino acid transport was also investigated in two conditions differing as to glucose concentration and/or availability, i.e. islets from fasted rats and islets maintained in tissue culture at high or low glucose concentrations. Neither alanine nor MeAIB transport was altered by fasting of the islet-donor rats. On the other hand, pancreatic islets maintained for 2 days in tissue culture at high (16.7 mM) glucose transported MeAIB at twice the rate of islets maintained at low (2.8 mM) glucose. Amino acid starvation of pancreatic islets during 11 h of tissue culture resulted in a 2-fold increase in MeAIB transport.  相似文献   

14.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

15.
The Na(+)-dependent uptake system for bile acids in the ileum from rabbit small intestine was characterized using brush-border membrane vesicles. The uptake of [3H]taurocholate into vesicles prepared from the terminal ileum showed an overshoot uptake in the presence of an inwardly-directed Na(+)-gradient ([Na+]out > [Na+]in), in contrast to vesicles prepared from the jejunum. The Na(+)-dependent [3H]taurocholate uptake was cis-inhibited by natural bile acid derivatives, whereas cholephilic organic compounds, such as phalloidin, bromosulphophthalein, bilirubin, indocyanine green or DIDS - all interfering with hepatic bile-acid uptake - did not show a significant inhibitory effect. Photoaffinity labeling of ileal membrane vesicles with 3,3-azo- and 7,7-azo-derivatives of taurocholate resulted in specific labeling of a membrane polypeptide with apparent molecular mass 90 kDa. Bile-acid derivatives inhibiting [3H]taurocholate uptake by ileal vesicles also inhibited labeling of the 90 kDa polypeptide, whereas compounds with no inhibitory effect on ileal bile-acid transport failed to show a significant effect on the labeling of the 90 kDa polypeptide. The involvement of functional amino-acid side-chains in Na(+)-dependent taurocholate uptake was investigated by chemical modification of ileal brush-border membrane vesicles with a variety of group-specific agents. It was found that (vicinal) thiol groups and amino groups are involved in active ileal bile-acid uptake, whereas carboxyl- and hydroxyl-containing amino acids, as well as tyrosine, histidine or arginine are not essential for Na(+)-dependent bile-acid transport activity. The irreversible inhibition of [3H]taurocholate transport by DTNB or NBD-chloride could be partially reversed by thiols like 2-mercaptoethanol or DTT. Furthermore, increasing concentrations of taurocholate during chemical modification with NBD-chloride were able to protect the ileal bile-acid transporter from inactivation. These findings suggest that a membrane polypeptide of apparent M(r) 90,000 is a component of the active Na(+)-dependent bile-acid reabsorption system in the terminal ileum from rabbit small intestine. Vicinal thiol groups and amino groups of the transport system are involved in Na(+)-dependent transport activity, whereas other functional amino acids are not essential for transport activity.  相似文献   

16.
We have investigated the dependence of the rate of lactic acid production on the rate of Na(+) entry in cultured transformed rat Müller cells and in normal and dystrophic (RCS) rat retinas that lack photoreceptors. To modulate the rate of Na(+) entry, two approaches were employed: (i) the addition of L-glutamate (D-aspartate) to stimulate coupled uptake of Na(+) and the amino acid; and (ii) the addition of monensin to enhance Na(+) exchange. Müller cells produced lactate aerobically and anaerobically at high rates. Incubation of the cells for 2-4 h with 0.1-1 mM L-glutamate or D-aspartate did not alter the rate of production of lactate. ATP content in the cells at the end of the incubation period was unchanged by addition of L-glutamate or D-aspartate to the incubation media. Na(+)-dependent L-glutamate uptake was observed in the Müller cells, but the rate of uptake was very low relative to the rate of lactic acid production. Ouabain (1 mM) decreased the rate of lactic acid production by 30-35% in Müller cells, indicating that energy demand is enhanced by the activity of the Na(+)-K(+) pump or depressed by its inhibition. Incubation of Müller cells with 0.01 mM monensin, a Na(+) ionophore, caused a twofold increase in aerobic lactic acid production, but monensin did not alter the rate of anaerobic lactic acid production. Aerobic ATP content in cells incubated with monensin was not different from that found in control cells, but anaerobic ATP content decreased by 40%. These results show that Na(+)-dependent L-glutamate/D-aspartate uptake by cultured retinal Müller cells causes negligible changes in lactic acid production, apparently because the rates of uptake are low relative to the basal rates of lactic acid production. In contrast, the marked stimulation of aerobic lactic acid production caused by monensin opening Na(+) channels shows that glycolysis is an effective source of ATP production for the Na(+)-K(+) ATPase. A previous report suggests that coupled Na(+)-L-glutamate transport stimulates glycolysis in freshly dissociated salamander Müller cells by activation of glutamine synthetase. The Müller cell line used in this study does not express glutamine synthetase; consequently these cells could only be used to examine the linkage between Na(+) entry and the Na(+) pump. As normal and RCS retinas express glutamine synthetase, the role of this enzyme was examined by coapplication of L-glutamate and NH(4) (+) in the presence and absence of methionine sulfoximine, an inhibitor of glutamine synthetase. In normal retinas, neither the addition of L-glutamate alone or together with NH(4) (+) caused a significant change in the glycolytic rate, an effect linked to the low rate of uptake of this amino acid relative to the basal rate of retinal glycolysis. However, incubation of the RCS retinas in media containing L-glutamate and NH(4)(+) did produce a small (15%) increase in the rate of glycolysis above the rate found with L-glutamate alone and controls. It is unlikely that this increase was the result of conversion of L-glutamate to L-glutamine, as it was not suppressed by inhibition of glutamine synthetase with 5 mm methionine sulfoximine. It appears that the magnitude of Müller cell glycolysis required to sustain the coupled transport of Na(+) and L-glutamate and synthesis of L-glutamine is small relative to the basal glycolytic activity in a rat retina.  相似文献   

17.
1. Explants of mammary tissue from pseudopregnant rabbits were cultured at 37 degrees C in air for 24-48h in Medium 199 buffered with 20mm-Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid]. The medium contained insulin and corticosterone, or insulin, corticosterone and sheep prolactin in the presence or absence of ouabain, an inhibitor of Na(+)/K(+)-dependent adenosine triphosphatase. The responses of explants were assessed histologically, by measuring the tissue concentration of K(+), and by rates of synthesis of RNA, protein and fatty acids. The effect of ouabain on Na(+) and K(+) concentrations in slices of lactating rabbit mammary-gland tissue incubated for 1h at 37 degrees C in Krebs bicarbonate buffer was also studied. 2. Prolactin increased the concentration of K(+) in mammary explants, an effect prevented by ouabain. In slices of lactating tissue, there was a linear relationship between the log dose of ouabain (from 0.1 to 10mum) and increased Na(+) and decreased K(+) concentrations in the tissue. 3. Ouabain at concentrations up to 1mum did not affect the rate of synthesis of RNA, protein or fatty acids by explants cultured with insulin and corticosterone. By contrast, the stimulatory effect of prolactin on protein synthesis was diminished and the induction of medium-chain fatty acid synthesis by prolactin was almost abolished. RNA synthesis was unaffected. Histological examination showed no tissue damage by 1mum-ouabain. 4. Explants cultured in the presence of 2mum-ouabain for 24h retained their ability to respond to prolactin when the ouabain was removed from the culture medium. Between 24 and 48h they showed responses to prolactin of a magnitude similar to those of explants never exposed to ouabain. 5. These results show that a fully functional Na(+)/K(+)-dependent adenosine triphosphatase system is necessary for prolactin to promote secretory activity in rabbit mammary gland.  相似文献   

18.
The activities of several selected Na(+)-dependent amino acid transporters were identified in human liver plasma membrane vesicles by testing for Na(+)-dependent uptake of several naturally occurring neutral amino acids or their analogs. Alanine, 2-(methylamino)isobutyric acid, and 2-aminoisobutyric acid were shown to be almost exclusively transported by the same carrier, system A. Kinetic analysis of 2-(methylamino)isobutyric acid uptake by the human hepatic system A transporter revealed an apparent Km of 0.15 mM and a Vmax of 540 pmol.mg-1 protein.min-1. Human hepatic system A accepts a broad range of neutral amino acids including cysteine, glutamine, and histidine, which have been shown in other species to be transported mainly by disparate carriers. Inhibition analysis of Na(+)-dependent cysteine transport revealed that the portion of uptake not mediated by system A included at least two saturable carriers, system ASC and one other that has yet to be characterized. Most of the glutamine and histidine uptake was Na(+)-dependent, and the component not mediated by system A constituted system N. The largest portion of glycine transport was mediated through system A and the remainder by system ASC with no evidence for system Gly activity. Our examination of Na(+)-dependent amino acid transport documents the presence of several transport systems analogous to those described previously but with some notable differences in their functional activity. Most importantly, the results demonstrate that liver plasma membrane vesicles are a valuable resource for transport analysis of human tissue.  相似文献   

19.
20.
The ability of preimplantation rat conceptuses to take up several amino acids was examined under a variety of conditions, and the characteristics of uptake were compared to those determined previously for mouse conceptuses. Mediated leucine transport in two-cell rat conceptuses is Na(+)-independent and inhibited almost completely by 2-amino-endobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), so it resembles system L which predominates in two-cell mouse conceptuses. System L becomes less conspicuous than homoarginine-sensitive, Na(+)-independent leucine transport (provisionally designated system bo,+) by the time rat conceptuses develop into blastocysts, as is also the case for mouse conceptuses. In contrast to leucine transport, system bo,+ appears to be the most conspicuous transporter of cationic amino acids throughout preimplantation development of both species. A Na(+)-independent cation-preferring amino acid transport process also appears to be present in rat as well as in mouse conceptuses. Moreover, rat conceptuses resemble mouse conceptuses because Na(+)-dependent transport system Gly activity virtually disappears from them by the time they form blastocysts. Unlike mouse conceptuses, however, Na(+)-dependent system Bo,+ activity appears to be present throughout preimplantation development of rat conceptuses, whereas it has not been detected until at least the two-cell stage in the mouse. Although system Bo,+ becomes more conspicuous in mouse than in rat conceptuses by the time they form blastocysts, system Bo,+ activity appears to increase when blastocysts of both species are removed from the uterus just prior to implantation. The latter observation is consistent with the possibility that system Bo,+ activity is controlled, in part, by the uterus near the time of implantation, although further studies are needed to verify this possibility. Similarities as well as differences in the amino acid transport processes present in conceptuses of rats and mice may eventually be understood best in relation to the environments in which they develop in vitro and in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号