首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

2.
3.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

4.
INTRODUCTION: In vitro exposure of cells to a fluorochrome-labeled inhibitor of caspases (FLICA) labels cells after caspase activation and arrests further progress of apoptotic cell death. The labeled apoptotic cells can be quantified in relation to time of apoptosis induction with flow cytometry. Loss of membrane integrity (late apoptosis and cell death) was measured with exposure to propidium iodide (PI). From the labeling patterns with FLICA and PI the apoptotic cell death kinetics was calculated. METHODS: HL60 cells and human umbilical vein endothelial cells (HUVECs) were incubated in the presence of the fluorescent inhibitor of caspases, FAM-VAD-FMK (20 mM, FLICA) for up to 48 h. Apoptosis was induced by Camptothecin (CPT, 0.15 microM) or by a mixture of tumour necrosis factor alpha (TNF-alpha, 3 nM)-Cycloheximide (CHX, 50 microM). Samples were counterstained with PI. RESULTS: Incubation of HL60 cells with CPT induced apoptosis in 92% of cells within the first 18 h at a rate of 5% per hour while incubation with TNF-alpha/CHX resulted in apoptosis in 76% of the cells within the first 6 h at a rate of 12% per hour. Incubation of HUVECs with TNF-alpha/CHX induced apoptosis in 65% of the cells within the first 18 h at a rate of 3.7% per hour during the first 6 h of the incubation. During incubation with TNF-alpha/CHX the remaining viable HL60 cells and HUVECs entered apoptosis within 48 h at an approximate rate of 0.2 per hour. However, on the road of the cell death, HL60 cells showed a transit from the viable (FLICA-/PI-) to early (FLICA+/PI-) and further to late apoptotic phase (FLICA+/PI+), while HUVECs entered directly from the viable to the late apoptotic stage. CONCLUSION: Apoptotic turnover rate depends on the stimulus used to induce apoptosis, while the type of the cell determines the way of the transition within the apoptotic cascade.  相似文献   

5.
Thymol, a naturally occurring phenolic compound, has been known for its antioxidant, anti microbial, and anti inflammatory activity. Thymol has also been reported as anti-cancer agent, but its anti-cancer mechanism has not yet been fully elucidated. Thus, we aimed to investigate anticancer activity of thymol on HL-60 (acute promyelotic leukemia) cells. In our study, thymol demonstrated dose dependent cytotoxic effects on HL-60 cells after 24 h of exposure. However, thymol did not show any cytotoxic effect in normal human PBMC. The cytotoxic effect of thymol on HL-60 cells appears to be associated with induction of cell cycle arrest at sub G0/G1 phase, and apoptotic cell death based on genomic DNA fragmentation pattern. Thymol also showed significant increase in production of reactive oxygen species (ROS) activity, increase in mitochondrial H2O2 production and depolarization of mitochondrial membrane potential. On performing Western Blot analysis, thymol showed increase in Bax protein level with a concomitant decrease in Bcl2 protein expression in a dose dependent manner. Our study also showed activation of caspase -9, -8 and -3 and concomitant PARP cleavage, which is the hallmark of caspase-dependent apoptosis. Moreover, to rule out the involvement of other mechanisms in apoptosis induction by thymol, we also studied its effect on apoptosis inducing factor (AIF). Thymol induced AIF translocation from mitochondria to cytosol and to nucleus, thus indicating its ability to induce caspase independent apoptosis. We conclude that, thymol-induced apoptosis in HL-60 cells involves both caspase dependent and caspase independent pathways.  相似文献   

6.
Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0-100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1-2 h of exposure to 50 mM alcohol. Exposure to 25-50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism.  相似文献   

7.
The sesquiterpene parthenolide (PRT) is an active component of Mexican-Indian medicinal plants and also of the common herb of European origin feverfew. PRT is considered to be a specific inhibitor of NF-kappaB. Human leukemic HL-60, Jurkat, and Jurkat IkappaBalphaM cells, the latter expressing a dominant-negative IkappaBalpha and thus having non-functional NF-kappaB, were treated with PRT and activation of caspases, plasma membrane integrity, DNA fragmentation, chromatin condensation (probed by DNA susceptibility to denaturation), and changes in cell morphology were determined. As a positive control for apoptosis cells were treated with topotecan (TPT) and H2O2. At 2-8 microM concentration PRT induced transient cell arrest in G2 and M followed by apoptosis. A narrow range of PRT concentration (2-10 microM) spanned its cytostatic effect, induction of apoptosis and induction of necrosis. In fact, necrotic cells were often seen concurrently with apoptotic cells at the same PRT concentration. Atypical apoptosis was characterized by loss of plasma membrane integrity very shortly after caspases activation. In contrast, a prolonged phase of caspase activation with preserved integrity of plasma membrane was seen during apoptosis induced by TPT or H2O2. Necrosis induced by PRT was also atypical, characterized by rapid rupture of plasma membrane and no increase in DNA susceptibility to denaturation. Using Jurkat cells with inactive NF-kappaB we demonstrate that cell cycle arrest and the mode of cell death induced by PRT were not caused by inhibition of NF-kappaB. The data suggest that regardless of caspase activation PRT targets plasma membrane causing its destruction. A caution, therefore, should be exercised in interpreting data of the experiments in which PRT is used with the intention to specifically prevent activation of NF-kappaB.  相似文献   

8.
The ability of low-dose ionizing radiation (1 Gy) to modulate the activities of the mitogen-activated protein kinase (MAPK) and Jun NH2-terminal kinase (JNK1) cascades in human myeloid leukemia (HL60/pCEP4) cells and in cells overexpressing the anti-apoptosis protein BCL2 (HL60/Bcl-2) was investigated. Radiation exposure caused prolonged (3-4 h) activation of MAPK in HL60 cells. The ability of radiation to activate the MAPK pathway was attenuated by 30% in cells overexpressing BCL2. In contrast, low-dose irradiation of HL60/pCEP4 and HL60/Bcl-2 cells failed to modulate JNK1 activity. Inhibition of the MAPK pathway by use of the specific MEK1/2 inhibitor (10 microM PD98059) in both HL60/pCEP4 and HL60/Bcl-2 cells prior to irradiation permitted a similar prolonged radiation-induced activation of JNK1. Furthermore, combined treatment with PD98059 and radiation in both cell types caused a large decrease in growth of cells in suspension culture, a large increase in apoptosis, and a 90% decline in clonogenicity when compared to either treatment alone. Reduced proliferation after combined irradiation and PD98059 treatment in both cell types correlated with reduced Cdc2 activity and arrest in G2/M phase of the cell cycle. These data demonstrate that inhibition of MEK1/2 leading to blockade of the MAPK activation increases the radiation sensitivity of HL60 cells and decreases the ability of these cells to recover from the radiation-induced arrest at the G2/M-phase cell cycle checkpoint. In addition, our data demonstrate that elevated expression of BCL2 does not abrogate the ability of inhibition of MAPK to potentiate radiation-induced cell death in HL60 cells.  相似文献   

9.
Chondrocyte survival is closely linked to cartilage integrity, and forms of chondrocyte apoptotic death can contribute to cartilage degeneration in articular diseases. Since growing evidence also implicates polyamines in the control of cell death, we have been investigating the role of polyamine metabolism in chondrocyte survival and apoptosis. Treatment of human C-28/I2 chondrocytes with N(1),N(11)-diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, inhibited polyamine biosynthesis and induced polyamine catabolism, thus rapidly depleting all main polyamines. DENSPM did not increase significantly caspase activity, but provoked a late cell death associated to DNA fragmentation. A short treatment with DENSPM did not reduce cell viability when given alone, but enhanced caspase-3 and -9 activation in chondrocytes exposed to tumor necrosis factor-alpha (TNF) and cycloheximide (CHX). A longer treatment with DENSPM however reduced caspase response to TNF plus CHX. Depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not cause cell death and contrasted apoptosis by decreasing caspase activities. In conclusion, following DENSPM treatment, C-28/I2 chondrocytes are initially sensitized to caspase 9-dependent apoptosis in the presence of TNF and CHX and may eventually undergo a late and mainly caspase-independent cell death in the absence of other stimuli. Moreover, these results indicate that a reduction of polyamine levels not only leads to inhibition of cell proliferation, but also of caspase-mediated pathways of chondrocyte apoptosis.  相似文献   

10.
The cellular response to p53 activation varies greatly in a stimulus- and cell type-specific manner. Dissecting the molecular mechanisms defining these cell fate choices will assist the development of effective p53-based cancer therapies and also illuminate fundamental processes by which gene networks control cellular behaviour. Using an experimental system wherein stimulus-specific p53 responses are elicited by non-genotoxic versus genotoxic agents, we discovered a novel mechanism that determines whether cells undergo proliferation arrest or cell death. Strikingly, we observe that key mediators of cell-cycle arrest (p21, 14-3-3σ) and apoptosis (PUMA, BAX) are equally activated regardless of outcome. In fact, arresting cells display strong translocation of PUMA and BAX to the mitochondria, yet fail to release cytochrome C or activate caspases. Surprisingly, the key differential events in apoptotic cells are p53-dependent activation of the DR4 death receptor pathway, caspase 8-mediated cleavage of BID, and BID-dependent activation of poised BAX at the mitochondria. These results reveal a previously unappreciated role for DR4 and the extrinsic apoptotic pathway in cell fate choice following p53 activation.  相似文献   

11.
Life's smile, death's grin: vital functions of apoptosis-executing proteins   总被引:14,自引:0,他引:14  
Apoptosis is executed by caspases as well as caspase-independent death effectors. Caspases are expressed as inactive zymogens in virtually all animal cells and are activated in cells destined to undergo apoptosis. However, there are many examples where caspase activation is actually required for cellular processes not related to cell death, namely terminal differentiation, activation, proliferation, and cytoprotection. Several caspase-independent death effectors including apoptosis-inducing factor, endonuclease G and a serine protease (Omi/HtrA2) are released from the mitochondrial intermembrane space upon permeabilization of the outer membrane. Such proteins also have important roles in cellular redox metabolism and/or mitochondrial biogenesis. As a general rule, it thus appears that cell-death-relevant proteins, especially those involved in the core of the executing machinery, have a dual function in life and death. This has important implications for pathophysiology. The fact that the building blocks of the apoptotic machinery have normal functions not related to cell death may mean that essential parts of the apoptotic executioner cannot be lost and thus reduces the possibility of oncogenic mutations that block the apoptotic program. Moreover, therapeutic suppression of unwarranted cell death must be designed to target only the lethal (and not the vital) role of death effectors.  相似文献   

12.
N-(2-(1H-indazol-3-yl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-4-chloro-N-methylbenzamide (SMT-A07) is a novel 3-(Indol-2-yl) indazole derivative. The anticancer activities in vitro and the cell apoptosis-induction abilities of SMT-A07 on human leukemia HL60 and NB4 cell lines were investigated in this study. The results of MTT assay showed SMT-A07 was a potential and highly efficient antitumor compound with IC50 values ranging from 0.09 to 1.19 μM in five leukemia cell lines. SMT-A07 treatment for 24 h caused the increment of apoptosis rate from 6.88 to 49.72% in HL60 cells and from 8.72 to 56.28% in NB4 cells by flow cytometry analysis. Agarose gel electrophoresis showed DNA fragmentation that appeared after cells were exposed to SMT-A07. After SMT-A07 incubation, DAPI staining revealed the presence of DNA fragmentation, and perinuclear apoptotic body. SMT-A07 also resulted in a loss of ΔΨm in both HL60 and NB4 cells by JC-1 staining. Moreover, apoptosis-related proteins were examined by western blotting to explore the mechanism of its cytotoxicity. SMT-A07 exposure caused down-regulation and cleavage of procaspase-8, procaspase-3, Bid, PARP and up-regulation of cleaved caspase-8, cleaved caspase-3, PARP (Cleaved Fragment). In addition, the presence of pan-caspase inhibitor BOC-D-FMK prevented cells from caspase-3 activation, PARP cleavage, and subsequent apoptosis. Our study demonstrates that SMT-A07 displays an apparent antitumor activity with extensive anti-leukemia spectrum, and SMT-A07 can induce the apoptosis of HL60 and NB4 cells activation of the caspase cascade, which deserves further development.  相似文献   

13.
S Ning  S J Knox 《Radiation research》1999,151(6):659-669
Cells of the TP53-deficient human leukemia cell line HL60 continue to progress throughout the cell cycle and arrest in the G2/M phase during protracted exposure to exponentially decreasing low-dose-rate radiation. We have hypothesized that G2/M-phase arrest contributes to the extent of radiation-induced cell death by apoptosis as well as to overall cell killing. To test this hypothesis, we used caffeine and nocodazole to alter the duration of G2/M-phase arrest of HL60 cells exposed to exponentially decreasing low-dose-rate irradiation and measured the activity of G2/M-phase checkpoint proteins, redistribution of cells in the phases of the cell cycle, cell death by apoptosis, and overall survival after irradiation. The results from these experiments demonstrate that concomitant exposure of HL60 cells to caffeine (2 mM) during irradiation inhibited radiation-induced tyrosine 15 phosphorylation of the G2/M-phase transition checkpoint protein CDC2/p34 kinase and reduced G2/M-phase arrest by 40-46% compared to cells irradiated without caffeine. Radiation-induced apoptosis also decreased by 36-50% in cells treated with caffeine and radiation compared to cells treated with radiation alone. Radiation survival was significantly increased by exposure to caffeine. In contrast, prolongation of G2/M-phase arrest by pre-incubation with nocodazole enhanced radiation-induced apoptosis and overall radiation-induced cell killing. To further study the role of cell death by apoptosis in the response to exponentially decreasing low-dose-rate irradiation, HL60 cells were transfected with the BCL2 proto-oncogene. The extent of G2/M-phase arrest was similar for parental, neomycin-transfected control and BCL2-transfected cells during and after exponentially decreasing low-dose-rate irradiation. However, there were significant differences (P < 0.01) in the extent of radiation-induced apoptosis of parental and neomycin- and BCL2-transfected cells after irradiation, with significantly less radiation-induced apoptosis and higher overall survival in BCL2-transfected cells than similarly irradiated control cells. These data demonstrate that radiation-induced G2/M-phase arrest and subsequent induction of apoptosis play an important role in the response of HL60 cells to low-dose-rate irradiation and suggest that it may be possible to increase radiation-induced apoptosis by altering the extent of G2/M-phase arrest. These findings are clinically relevant and suggest a novel therapeutic strategy for increasing the efficacy of brachytherapy and radioimmunotherapy.  相似文献   

14.
Polyamine depletion induces apoptosis through mitochondria-mediated pathway   总被引:4,自引:0,他引:4  
Polyamines, namely putrescine, spermidine, and spermine, are essential for cell survival and proliferation. A decrease in intracellular polyamine levels is associated with apoptosis. In this study, we used inhibitors of polyamine biosynthesis to examine the effect of polyamine depletion. A combination of inhibitors of ornithine decarboxylase, S-adenosylmethionine decarboxylase, or spermidine synthase decreased intracellular polyamine levels and induced cell death in a WEHI231 murine B cell line. These cells exhibited apoptotic features including chromatin condensation and oligonucleosomal DNA fragmentation. Addition of exogenous polyamines reversed the observed features of apoptotic cell death. Similar effects were also observed in other cell lines: a human B cell line Ramos and a human T cell line Jurkat. Depletion of polyamines induced activation of caspase-3 and disruption of the mitochondrial membrane potential (Delta psi m). Inhibition of caspase activities by an inhibitor prevented the apoptotic nuclear changes but not Delta psi m disruption induced by polyamine depletion. Overexpression of Bcl-xl, an anti-apoptotic Bcl-2 family protein, completely inhibited Delta psi m disruption, caspase activation, and cell death. These results indicate that the depletion of intracellular polyamines triggers the mitochondria-mediated pathway for apoptosis, resulting in caspase activation and apoptotic cell death.  相似文献   

15.
The sesquiterpene parthenolide (PRT) is an active component of Mexican-Indian medicinal plants and also of the common herb of European origin feverfew. PRT is considered to be a specific inhibitor of NF-6B. Human leukemic HL-60, Jurkat, and Jurkat IκB·M cells, the latter expressing a dominant-negative IκB· and thus having non-functional NF-6B, were treated with PRT and activation of caspases, plasma membrane integrity, DNA fragmentation, chromatin condensation (probed by DNA susceptibility to denaturation), and changes in cell morphology were determined. As a positive control for apoptosis cells were treated with topotecan (TPT) and H2O2 . At 2–8 μM concentration PRT induced transient cell arrest in G2 and M followed by apoptosis. A narrow range of PRT concentration (2–10 μM) spanned its cytostatic effect, induction of apoptosis and induction of necrosis. In fact, necrotic cells were often seen concurrently with apoptotic cells at the same PRT concentration. Atypical apoptosis was characterized by loss of plasma membrane integrity very shortly after caspases activation. In contrast, a prolonged phase of caspase activation with preserved integrity of plasma membrane was seen during apoptosis induced by TPT or H2O2. Necrosis induced by PRT was also atypical, characterized by rapid rupture of plasma membrane and no increase in DNA susceptibility to denaturation. Using Jurkat cells with inactive NF-κB we demonstrate that cell cycle arrest and the mode of cell death induced by PRT were not caused by inhibition of NF-κB. The data suggest that regardless of caspase activation PRT targets plasma membrane causing its destruction. A caution, therefore, should be exercised in interpreting data of the experiments in which PRT is used with the intention to specifically prevent activation of NF-κB.  相似文献   

16.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

17.
18.
BACKGROUND: There are two fundamental forms of cell death: apoptosis and necrosis. Molecular studies of cell death thus far favor a model in which apoptosis and necrosis share very few molecular regulators. It appears that apoptotic processes triggered by a variety of stimuli converge on the activation of a member of the caspase family, such as caspase 3, which leads to the execution of apoptosis. It has been suggested that blocking of caspase activation in an apoptotic process may divert cell death to a necrotic demise, suggesting that apoptosis and necrosis may share some upstream events. Activation of caspase is preceded by the release of mitochondrial cytochrome C. MATERIALS AND METHODS: We first studied cell death induced by beta-lapachone by MTT and colony-formation assay. To determine whether the cell death induced by beta-lapachone occurs through necrosis or apoptosis, we used the PI staining procedure to determine the sub-G1 fraction and the Annexin-V staining for externalization of phophatidylserine. We next compared the release of mitochondrial cytochrome C in apoptosis and necrosis. Mitochondrial cytochrome C was determined by Western blot analysis. To investigate changes in mitochondria that resulted in cytochrome C release, the mitochondrial membrane potential (delta psi) was analyzed by the accumulation of rhodamine 123, a membrane-permeant cationic fluorescent dye. The activation of caspase in apoptosis and necrosis were measured by using a profluorescent substrate for caspase-like proteases, PhiPhiLuxG6D2. RESULTS: beta-lapachone induced cell death in a spectrum of human carcinoma cells, including nonproliferating cells. It induced apoptosis in human ovary, colon, and lung cancer cells, and necrotic cell death in four human breast cancer cell lines. Mitochondrial cytochrome C release was found in both apoptosis and necrosis. This cytochrome C release occurred shortly after beta-lapachone treatment when cells were fully viable by trypan blue exclusion and MTT assay, suggesting that cytochrome C release is an early event in beta-lapachone induced apoptosis as well as necrosis. The mitochondrial cytochrome C release induced by beta-lapachone is associated with a decrease in mitochondrial transmembrane potential (delta psi). There was activation of caspase 3 in apoptotic cell death, but not in necrotic cell death. This lack of activation of CPP 32 in human breast cancer cells is consistent with the necrotic cell death induced by beta-lapachone as determined by absence of sub-G1 fraction, externalization of phosphatidylserine. CONCLUSIONS: beta-lapachone induces either apoptotic or necrotic cell death in a variety of human carcinoma cells including ovary, colon, lung, prostate, and breast, suggesting a wide spectrum of anti-cancer activity in vitro. Both apoptotic and necrotic cell death induced by beta-lapachone are preceded by a rapid release of cytochrome C, followed by the activation of caspase 3 in apoptotic cell death but not in necrotic cell death. Our results suggest that beta-lapachone is a potential anti-cancer drug acting on the mitochondrial cytochrome C-caspase pathway, and that cytochrome C is involved in the early phase of necrosis.  相似文献   

19.
The sensitivity of normal diploid Syrian hamster embryo (SHE) cells to apoptosis was tested after treatment with the topoisomerase inhibitors camptothecin and etoposide and after serum withdrawal. Programmed cell death (PCD) was identified through morphological, biochemical, and molecular changes and compared with that of HL60 cell line. The results showed that topoisomerase inhibitors, which were shown to be potent PCD inducers in the HL60 cell line, induced a weaker apoptotic response in SHE cells than after growth factor deprivation. In addition, serum-free medium, which rapidly induced apoptosis in SHE cells, did not affect the HL60 cell line. In both cell types, PCD was expressed by condensed chromatin, fragmented nuclei, and DNA laddering on electrophoretic gels, an indisputable sign of apoptosis. In apoptotic HL60 cells, the cleavage of 113-kDa poly(ADP-ribose)polymerase (PARP) resulted in the so-called apoptotic 89-kDa fragment and was associated with increased caspase-3 activity. In apoptotic SHE cells, PARP degraded early but the degradation profile was not characterized by the appearance of an 89-kDa fragment. Moreover, no activation of caspase-3 was noted. ZnCl(2), which is known to prevent protease activity responsible for apoptosis features, inhibited PARP cleavage and nuclear modifications induced by apoptotic stimuli in both cell types, but with a higher sensitivity in SHE cells. Apoptosis induced by serum deprivation was linked with c-myc negative regulation in SHE cells, but not with p53 protein accumulation, while topoisomerase inhibitors led to p53 stabilization without any change in c-myc expression. Serum-free medium and topoisomerase inhibitors did not modify c-myc expression in the HL60 cell line. The overall results demonstrated that apoptosis, which is a carefully regulated process of cell death, may proceed through mechanisms varying according to cell type or apoptosis inducer. In addition, markers which are generally considered hallmarks of apoptosis may fail to appear in some cell types.  相似文献   

20.
Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号