首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Little information is available on the effects of different sources of tannins on ruminant product quality. Nowadays several tannin-rich extracts, produced from different plants, are available and contain tannins belonging to different chemical groups, but most of these have not been used so far as feed supplements. The present study aimed at comparing the effects of feeding three tannin extracts (one containing condensed tannins and two containing hydrolysable tannins) to lambs on growth performances and meat oxidative stability. Comisana male lambs were divided into four groups (n=9 each) and were fed for 75 days: a concentrate-based diet (CON), or CON supplemented with 4% tannin extracts from either mimosa (MI; Acacia mearnsii, De Wild; condensed tannins), chestnut (CH; Castanea sativa, Mill; hydrolysable ellagitannins) or tara (TA; Cesalpinia spinosa, (Molina) Kuntze; hydrolysable gallotannins). Only CH reduced growth rate, final weight, carcass weight and feed intake (P<0.05). Tannins did not affect the concentration of the main fatty acid classes and the peroxidability of the intramuscular fat (P>0.05). The TA diet increased (P<0.001) the concentration of γ-tocopherol in muscle and tended to increase that of α-tocopherol (P=0.058). Oxidative stability of raw and cooked meat, or of meat homogenates incubated with pro-oxidants, was not affected by the extracts. These results, compared with those reported in the literature, highlight that some effects of tannins cannot be easily generalized, but may strictly depend on their specific characteristics and on conditions inherent to the basal diet and the metabolic status of the animals.  相似文献   

2.
Microbial degradation of tannins – A current perspective   总被引:26,自引:0,他引:26  
Tannins are water-soluble polyphenolic compounds having wide prevalence in plants. Hydrolysable and condensed tannins are the two major classes of tannins. These compounds have a range of effects on various organisms – from toxic effects on animals to growth inhibition of microorganisms. Some microbes are, however, resistant to tannins, and have developed various mechanisms and pathways for tannin degradation in their natural milieu. The microbial degradation of condensed tannins is, however, less than hydrolysable tannins in both aerobic and anaerobic environments. A number of microbes have also been isolated from the gastrointestinal tract of animals, which have the ability to break tannin-protein complexes and degrade tannins, especially hydrolysable tannins. Tannase, a key enzyme in the degradation of hydrolysable tannins, is present in a diverse group of microorganisms, including rumen bacteria. This enzyme is being increasingly used in a number of processes. Presently, there is a need for increased understanding of the biodegradation of condensed tannins, particularly in ruminants.  相似文献   

3.
The present study aimed at determining the influence of condensed tannins present in the Brazilian legume species Mimosa hostilis, Mimosa caesalpinifolia and Bauhinia cheilantha on ruminal degradability, microbial colonization and enzymatic activity. Polyethylene glycol (PEG) was used to reduce the astringency and concentration of soluble condensed tannins. Four ruminally-cannulated Saanen goats (60 ± 8 kg BW) were fed, in two experimental periods, with a hay diet based on the studied legumes treated or non-treated with PEG. Voluntary intake, microbial colonization, DM, CP, NDF, and ruminal degradability of PEG treated and non-treated forage leaves, as well as pH, ammonia and 1,4 β-endoglucanase activity of the rumen content were evaluated. Astringency and soluble tannin concentration of the studied legumes were reduced by approximately 70% and 50%, respectively, with PEG treatment. Average DM intake was higher for the treated diet (16.76 g DM/kg BW/day against 13.06 g DM/kg BW/day). Percentile values for degradation parameters and for potential and effective degradabilities of DM, CP and NDF were also affected by the tannins, but at different intensities. Electron microscopic observations of ruminally-incubated legume leaves showed a more effective microbial colonization of PEG-treated leaves for all legume species. A decrease in pH and an increase in ammonia concentration and in endoglucanase activity in the ruminal content was also observed for PEG-treated diets at all sampling periods. Condensed tannins of the studied legume species have influenced the adhesion conditions, colonization and enzymatic activity of the microbial ecosystem, and consequently the ruminal degradation of the different dietary fractions. For this reason, the reduction in condensed tannin would be of great importance to improve the nutrition of ruminant feeding of these species.  相似文献   

4.

Background and Aims

Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta.

Methods

Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine–glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin–Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions.

Key Results and Conclusions

The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described.  相似文献   

5.
The gas production in vitro method was used to evaluate the degradability and gas production of browse plants in the absence or presence of polyethylene glycol 8000 (PEG). Substrates (leguminous and browse plants; 500 mg) were incubated for 24 h and the accumulated gas produced recorded. The incubation contents of the syringes were transferred into nylon bags and the undegraded residues weighed after washing and drying to constant weight (syringe-nylon bag (SNB) method). Substrates were also incubated in the rumen in nylon bags for 24 h to determine in sacco degradability. Gas production ranged between 10.3 and 64.4 ml whereas dry matter degradation ranges between 27.3 and 70.9%. Addition of PEG, which minimised the inhibitory effects of tannin on microbial fermentation resulted in an increase in both gas production and degradability in vitro, which ranged from 25.7 to 64.2 ml and 34.2 to 75.0%, respectively. Correlation analysis of the DM degradability estimated by the SNB method and in sacco method was greater in the presence of PEG (y=0.71x+14.9; r2=0.92) compared with absence of PEG (y=0.59x+15.0; r2=0.72). Partitioning factor (PF) of substrate to gas, which was expressed as mg DM degraded/ml gas, reflects the variation in microbial biomass yield. The PF figures, which varied from 4.94–11.05 to PF+PEG values of 4.74–6.84 upon the addition of PEG, indicate the inhibitory effects of tannins on gas production. This suggests the presence of tannin has a potentially beneficial effect to protein nutrition of the host animal by altering partitioning of nutrients towards higher microbial yield rather than short chain fatty acids. PF values of browse plants determined both in the absence and presence of PEG may indicate the relative importance of tannins in different plant species on substrate degradability and partitioning of nutrients.  相似文献   

6.
Previous cafeteria studies suggested that a moderate natural gastrointestinal nematode (GIN) infection did not modify the resource selection of adult Criollo goats towards tannin-rich plants compared with worm-free goats. A higher infection with Haemonchus contortus could trigger a change in the resource selection behaviour towards tannin-rich foliage. Alternatively, goats might select plant species solely to meet their nutritional requirements. A cafeteria study investigated the effect of a high artificial infection with H. contortus on the feed resource selection of goats. Adult Criollo goats (37.5±4.8 kg BW) with browsing experience were distributed in two groups: the infected group (IG) with six animals artificially infected with H. contortus (6000 L3/animal); and the non-infected group (NIG) with six animals maintained worm-free. The experiment included two 5-day periods with additional 5-day adaptation period. In the first period, animals were offered foliage of five plant species with a decreasing gradient of condensed tannins (CT) (Mimosa bahamensis, Gymnopodium floribundum, Havardia albicans, Acacia pennatula, Lysiloma latisiliqum), and three plant species with negligible CT content (Leucaena leucocephala, Piscidia piscipula and Brosimum alicastrum). In the second period the foliage of B. alicastrum was withdrawn. A grain-based concentrate feed was offered daily at 1% BW in DM basis. Dry matter and nutrient intake was determined. Foliage selection of each experimental group was determined using the Chesson selection index. The H. contortus egg count per gram of faeces (EPG) was determined for infected goats twice daily. Chesson index showed a similar pattern of foliage selection on periods 1 and 2. Mean EPG of goats in IG was 2028±259 EPG during period 1 and 1 293±198 EPG during period 2 (P>0.05). During period 1, the selection pattern was highest for B. alicastrum (tannin-free), followed by a tannin-rich plant (M. bahamensis). These two plants remained as highly selected during period 2. The Chesson index showed that both experimental groups (IG and NIG) selected the same plant species in both periods. Thus, a high H. contortus infection did not affect selection of goats fed with CT-rich plants. Apparently, goats balanced their nutrient intake with the plants selected, showing evidence of nutritional wisdom. This balance may have helped to prevent excess protein in the diet and also to maintain a low GIN infection, both considered as examples of prophylactic self-medication.  相似文献   

7.
AIMS: To determine the effect of condensed tannins in Calliandra calothyrsus (calliandra) on rumen microbial function. METHODS AND RESULTS: Microbial populations, ruminal protein synthesis and fermentation end-products were measured in sheep fed roughage hay supplemented with calliandra (30%), with and without inclusions of polyethylene glycol (PEG) to counteract the effect of tannin. Molecular and conventional enumeration techniques were used to quantify rumen bacteria, fungi and protozoa, and protein synthesis was predicted from estimates of urinary purine excretion. The total number of cellulolytic bacteria, including populations of Fibrobacter succinogenes and Ruminococcus spp., was significantly lower in sheep supplemented with calliandra and these populations increased when animals were treated with PEG. By contrast, protozoa and fungi and the microbial group containing Bacteroides-Porphyromonas-Prevotella bacteria appeared to be less affected. The efficiency of microbial protein synthesis in the rumen was not altered significantly. CONCLUSION: Calliandra caused significant shifts in rumen microbial populations without changing the efficiency of protein synthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of calliandra tannins on rumen digestion may result more from complexing with nutrients than direct inhibition of micro-organisms.  相似文献   

8.
Tannins in forages complex with protein and reduce the availability of nitrogen to ruminants. Ruminal bacteria that ferment protein or peptides in the presence of tannins may benefit digestion of these diets. Bacteria from the rumina of sheep and goats fed Calliandra calothyrsus (3.6% N and 6% condensed tannin) were isolated on proteinaceous agar medium overlaid with either condensed (calliandra tannin) or hydrolyzable (tannic acid) tannin. Fifteen genotypes were identified, based on 16S ribosomal DNA-restriction fragment length polymorphism analysis, and all were proteolytic and fermented peptides to ammonia. Ten of the isolates grew to high optical density (OD) on carbohydrates (glucose, cellobiose, xylose, xylan, starch, and maltose), while the other isolates did not utilize or had low growth on these substrates. In pure culture, representative isolates were unable to ferment protein that was present in calliandra or had been complexed with tannin. One isolate, Lp1284, had high protease activity (80 U), a high specific growth rate (0.28), and a high rate of ammonia production (734 nmol/min/ml/OD unit) on Casamino Acids and Trypticase Peptone. Phylogenetic analysis of the 16S ribosomal DNA sequence showed that Lp1284 was related (97.6%) to Clostridium botulinum NCTC 7273. Purified plant protein and casein also supported growth of Lp1284 and were fermented to ammonia. This is the first report of a proteolytic, ammonia-hyperproducing bacterium from the rumen. In conclusion, a diverse group of proteolytic and peptidolytic bacteria were present in the rumen, but the isolates could not digest protein that was complexed with condensed tannin.  相似文献   

9.
C.S. MCSWEENEY, B. PALMER, R. BUNCH AND D.O. KRAUSE. 2001 .
Aims: To determine the effect of condensed tannins in Calliandra calothyrsus (calliandra) on rumen microbial function.
Methods and Results: Microbial populations, ruminal protein synthesis and fermentation end-products were measured in sheep fed roughage hay supplemented with calliandra (30%), with and without inclusions of polyethylene glycol (PEG) to counteract the effect of tannin. Molecular and conventional enumeration techniques were used to quantify rumen bacteria, fungi and protozoa, and protein synthesis was predicted from estimates of urinary purine excretion. The total number of cellulolytic bacteria, including populations of Fibrobacter succinogenes and Ruminococcus spp., was significantly lower in sheep supplemented with calliandra and these populations increased when animals were treated with PEG. By contrast, protozoa and fungi and the microbial group containing Bacteroides - Porphyromonas - Prevotella bacteria appeared to be less affected. The efficiency of microbial protein synthesis in the rumen was not altered significantly.
Conclusions: Calliandra caused significant shifts in rumen microbial populations without changing the efficiency of protein synthesis.
Significance and Impact of the Study: The effect of calliandra tannins on rumen digestion may result more from complexing with nutrients than direct inhibition of micro-organisms.  相似文献   

10.
Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins.  相似文献   

11.
The objective of this study was to test whether the use of tannin-rich shrub legume forage is advantageous for methane mitigation and metabolic protein supply at unchanged energy supply when supplemented in combination with tannin-free legumes to sheep. In a 6 × 6 Latin-square design, foliage of two tannin-rich shrub legume species (Calliandra calothyrsus and Flemingia macrophylla) were used to replace either 1/3 or 2/3, respectively, of a herbaceous high-quality legume (Vigna unguiculata) in a diet composed of the tropical grass Brachiaria brizantha and Vigna in a ratio of 0.55 : 0.45. A Brachiaria-only diet served as the negative control. Each experimental period lasted for 28 days, with week 3 serving for balance measurement and data collection inclusive of a 2-day stay of the sheep in open-circuit respiration chambers for measurement of gaseous exchange. While Vigna supplementation improved protein and energy utilisation, the response to the partial replacement with tannin-rich legumes was less clear. The apparent total tract digestibilities of organic matter, NDF and ADF were reduced when the tannin-rich plants partially replaced Vigna, and the dose-response relationships were mainly linear. The tannin-rich plants caused the expected redistribution of more faecal N in relation to urinary N. While Flemingia addition still led to a net body N retention, even when fed at the higher proportion, adding higher amounts of Calliandra resulted in body protein mobilisation in the growing lambs. With respect to energy, supplementation of Vigna alone improved utilisation, while this effect was absent when a tannin-rich plant was added. The inclusion of the tannin-rich plants reduced methane emission per day and per unit of feed and energy intake by up to 24% relative to the Vigna-only-supplemented diet, but this seems to have been mostly the result of a reduced organic matter and fibre digestion. In conclusion, Calliandra seems less apt as protein supplement for ruminants while Flemingia could partially replace a high-quality legume in tropical livestock systems. However, methane mitigation would be small due to associated reductions in N and energy retention.  相似文献   

12.
In vivo and in situ digestive characteristics of sainfoin (Onobrychis viciifolia L., a tannin-rich forage) and lucerne (Medicago sativa L., a tannin-free forage) were compared to evaluate the effects of condensed tannins (CT) and growth stage (vegetative v. early flowering) in experiment 1. In experiment 2, the hays of the two forages, harvested at early flowering, were compared. Ingestibility, organic matter digestibility (OMD) and nitrogen (N) retention were measured in sheep fed sainfoin and lucerne fresh forages and hays. The loss of dry matter (DM) and N from polyester bags suspended in the rumen, abomasum and small intestine was also measured using rumen fistulated sheep and other intestine fistulated sheep. Nitrogen content was lower in sainfoin than in lucerne. Content of CT in sainfoin decreased with growth stage (3.5 to 2.5 g CT/kg DM) and was lower for sainfoin hay (0.6 g CT/kg DM). Ingestibility and OMD did not differ between fresh-fed forage species. Total N tract digestibility in vivo was much lower for sainfoin than for lucerne fresh forages (mean value 0.540 v. 0.721, P < 0.001) and for sainfoin hay than lucerne hay (0.464 v. 0.683, P < 0.001). In both species, N digestibility was not altered by growth stage. The rumen degradation of N was lower in sainfoin than in lucerne, resulting in a lower proportion of N intake excreted in urine. The intestinal digestibility of sainfoin was also lower than that of lucerne, resulting in a higher N excretion in faeces. Hence the efficiency of N utilisation by sheep (ENr) was similar (mean value 0.205 and 0.199 g N retained/g N intake for fresh sainfoin and lucerne, respectively). The coefficient of N retention by the animal was higher for sainfoin at the vegetative stage than for all the other forages. Nitrogen degradability in the rumen determined by the nylon bag technique (DegN) was lower for sainfoin than for lucerne when forages were studied both fresh (mean value 0.608 and 0.818, respectively) and as hays (0.631 and 0.767). The efficiency of forage N digestion (ENd) was higher for sainfoin at the vegetative stage. Compared with lucerne, sainfoin greatly increased the in situ estimate of forage N escaping the rumen but decreased its intestinal digestibility.  相似文献   

13.
The percentage of tannins in leaves, bark, wood, and immature fruits of several species of Acacia and related mimosoid legumes from the southwestern U.S. and Mexico, along with a few from Costa Rica and Argentina, was determined by a modified hide powder procedure and by precipitation with casein. The relative percentages of hydrolyzable and condensed tannins were determined by the iodate and the vanillin-HCl methods, respectively. Gallotannins of selected samples were also determined by the rhodanine method. Although the amount of total tannins was similar for the first two methods, values for condensed tannins by the vanillin-HCl method were frequently two to four times greater than the total tannin values.  相似文献   

14.
Condensed tannins in forage legumes improve the nutrition of sheep by reducing ruminal degradation of plant protein and increasing crude protein flow to the intestine. However, the effects of condensed tannins in forage legumes on rumen bacterial populations in vivo are poorly understood. The aim of this study was to investigate the specific effects of condensed tannins from Lotus corniculatus on four proteolytic rumen bacteria in sheep during and after transition from a ryegrass (Lolium perenne)-white clover (Trifolium repens) diet (i.e., low condensed tannins) to a Lotus corniculatus diet (i.e., higher condensed tannins). The bacterial populations were quantified using a competitive polymerase chain reaction. Lotus corniculatus was fed with or without ruminal infusions of polyethylene glycol (PEG), which binds to and inactivates condensed tannins, enabling the effect of condensed tannins on bacterial populations to be examined. When sheep fed on ryegrass-white clover, populations of Clostridium proteoclasticum B316T, Butyrivibrio fibrisolvens C211a, Eubacterium sp. C12b, and Streptococcus bovis B315 were 1.5 x 10(8), 1.1 x 10(6), 4.6 x 10(8), and 7.1 x 10(6) mL(-1), respectively. When the diet was changed to Lotus corniculatus, the average populations (after 8-120 h) of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis decreased (P < 0.001) to 2.4 x 10(7), 1.1 x 10(5), 1.1 x 10(8), and 2.5 x 10(5) mL(-1), respectively. When PEG was infused into the rumen of sheep fed Lotus corniculatus, the populations of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis were higher (P < 0.01-0.001) than in sheep fed Lotus corniculatus without the PEG infusion, with average populations (after 8-120 h) of 4.9 x 10(7), 3.8 x 10(5), 1.9 x 10(8), and 1.0 x 10(6), respectively. Sheep fed the Lotus corniculatus diet had lower rumen proteinase activity, ammonia, and soluble nitrogen (P < 0.05-0.001) than sheep that were fed Lotus corniculatus plus PEG. The Lotus corniculatus diet reduced rumen nitrogen digestibility (P < 0.05) and ammonia pool size and increased the flow of undegraded feed nitrogen to the abomasum. The nitrogen intake, rumen non-ammonia nitrogen pool size, rumen microbial non-ammonia nitrogen pool size, and abomasal microbial non-ammonia nitrogen fluxes were similar both in sheep fed only Lotus corniculatus and in sheep fed Lotus corniculatus plus PEG, but nonmicrobial non-ammonia nitrogen flux to the abomasum was higher (P < 0.01) for the sheep fed only Lotus corniculatus. Although condensed tannins in Lotus corniculatus reduced the populations of some proteolytic bacteria, total ruminal microbial protein and microbial protein outflow to the abomasum were unchanged, suggesting a species-specific effect of condensed tannins on bacteria in the rumen.  相似文献   

15.
In this study we report preliminary data on the consumption of tannin-rich plants by sifakas (Propithecus verreauxi verreauxi) living in the Kirindy forest, western Madagascar. Sifakas spent most of their time feeding on only a few plant species. The tannin intake during the period between the pregnancy and birth season was significantly higher in pregnant females or females with lactating infants than in non-reproductive females and males. These periparturient females secured a larger proportion of condensed tannins by short feeding bouts on plants not included in the group's limited preferred food species. The measured increase in tannin intake is puzzling in light of the fact that tannins are commonly known for their protein-binding properties. Since protein demands are highest in pregnant and lactating females, possible medicinal benefits of tannin ingestion are considered. Tannin consumption is associated with an increase in body weight and stimulation of milk secretion. Veterinarians administer tannins as an astringent, anti-hemorrhagic and anti-abortive. Their high potential as an alternative anthelminthic has also recently been recognized. Thus, when viewed as self-medicating behavior, controlled increase in tannin intake could have multiple prophylactic advantages for females during the periparturient period. The high selectivity in their plant choice, and the presence of unusual feeding habits by a particular group of individuals (females with infants) limited in time (birth season), suggests that an increase in tannin ingestion may be a self-medicating behavior with multiple directly adaptive benefits to female reproduction. Electronic Publication  相似文献   

16.
Condensed tannins (CT) can play a role in rumen protein and fiber degradability, especially in legumes high in CT. In order to better understand their potential role in ruminant nutrition, three legume species native to Texas, Acacia angustissima var. hirta (prairie acacia) (288.0 g/kg neutral detergent fiber (NDFom), 40.9 g/kg N), Desmodium paniculatum (panicled tick-clover) (479.7 g/kg NDFom, 24.8 g/kg N), and Lespedeza procumbens (trailing bush-clover) (401.0 g/kg NDFom, 21.7 g/kg N) were studied to determine in sacco disappearance rates of key nutritional components compared to that of Medicago sativa (alfalfa) (226.8 g/kg NDFom, 34.6 g/kg N). Herbage was incubated in rumen-cannulated goats fed a basal diet of Sorghum bicolor×S. sudanense (sorghum-Sudan) hay, with disappearance measured at 0, 4, 8, 16, 28, 48 and 96 h. Among the native legumes, the highest CT concentrations were measured in prairie acacia (263 g CT/kg DM foliage) and the lowest (120 g CT/kg DM) in trailing bush-clover. The lowest concentrations of acid detergent fiber (ADFom), NDFom, and sulfuric acid lignin (lignin(sa)) were measured in prairie acacia, the first two fractions being comparable to alfalfa. Proportion remaining was calculated for CT, ADFom, lignin(sa), NDFom, and N for 0, 24 and 48 h of rumen incubation. Disappearance parameters were measured for ADFom, lignin(sa), NDFom and N for the three native legumes and compared to alfalfa. Alfalfa had the highest disappearance of all degradable fractions except lignin(sa). Potential disappearance (PD) fraction for ADFom, lignin(sa) and N were lower for the native legumes versus alfalfa. No differences in N proportion remaining at 24 and 48 h occurred in the native legumes despite differences in protein-bound CT proportion remaining at those same times. Of the native legumes studied, prairie acacia shows the greatest potential for contributing rumen-escape protein, suggesting it may be a candidate for further development as a pasture and rangeland renovation legume.  相似文献   

17.

Background and aims

Condensed tannins, a dominant class of plant secondary metabolites, play potentially important roles in plant-soil feedbacks by influencing the soil microbial community. Effects of condensed tannins on the soil microbial community and activity were examined by a short-term tannin-addition experiment under field and laboratory conditions.

Methods

Condensed tannins were extracted from the leaves of a dominant conifer (Dacrydium gracilis) in a tropical montane forest on Mt. Kinabalu, Borneo. The extracted tannins were added to soils beneath the conifer and a dominant broadleaf (Lithocarpus clementianus) to evaluate the dependence of the response to tannin addition on the initial composition of the soil microbial community.

Results

Enzyme activities in the field tannin-addition treatment were lower than in the deionized-water treatment. Carbon and nitrogen mineralization were also inhibited by tannin-addition. The fungi-to-bacteria ratio after tannin-addition was higher compared with the distilled-water treatment in the laboratory experiment.

Conclusions

Based on our results, we suggest that the higher concentration of condensed tannins in the leaf tissues of Dacrydium than in those of Lithocarpus is a factor influencing the microbial community and activity. This may have influences on subsequent plant performance, which induces plant-soil feedback processes that can control dynamics of the tropical montane forest ecosystem.  相似文献   

18.
Cistus ladanifer L. (CL) is a perennial shrub abundant in dry woods and dry land of Mediterranean zone, with high level of tannins. Tannins bind to protein, preventing its degradation in the digestive compartments. This tannin/protein complex may be advantageous when partially protecting good-quality feed protein from excessive rumen protein degradation. The objective of this trial was to use a CL phenol crude extract to prevent excessive rumen degradation of soya-bean meal protein. The phenolic compounds were extracted using an acetone/water solution (70:30, v/v). Soya-bean meal was then treated with this crude CL extract, containing 640 g of total phenols (TP) per kg of dry matter (DM), in order to obtain mixtures with 0, 12.5, 25, 50, 100 and 150 g of TP per kg DM. Three rumen-cannulated rams were used to assess in sacco rumen degradability of DM and nitrogen (N). The three-step in vitro procedure was used to determine intestinal digestibility. Increasing extract concentrations quadratically decreased the N-soluble fraction a (R2 = 0.96, P = 0.0001) and increased the non-soluble degradable fraction b (R2 = 0.92, P = 0.005). The rate of degradation c linearly decreased with CL extract doses (R2 = 0.44, P = 0.0065). For the effective rumen degradability of N, a linear reduction (R2 = 0.94, P < 0.0001) was observed. The in vitro intestinal digestibility of protein (ivID) quadratically decreased (R2 = 0.99, P < 0.0001) with TP inclusion and the rumen undegradable protein (RUP) showed a quadratic increase (R2 = 0.94, P = 0.0417). Total intestinal protein availability, computed from the RUP and ivID, linearly decreased with TP inclusion level (R2 = 0.45, P = 0.0033).  相似文献   

19.
Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals.  相似文献   

20.
The effect of condensed tannins from birdsfoot trefoil (Lotus corniculatus L.) on the cellulolytic rumen bacterium Fibrobacter succinogenes S85 was examined. Condensed tannins inhibited endoglucanase activity in the extracellular culture fluid, at concentrations as low as 25 μg ml-1. In contrast, cell-associated endoglucanase activity increased in concentrations of condensed tannins between 100 and 300 μg ml-1. Inhibition of endoglucanase activity in both the extracellular and the cell-associated fractions was virtually complete at 400 μg of condensed tannins ml-1. Despite the sharp decline in extracellular endoglucanase activity with increasing concentrations of condensed tannins, filter paper digestion declined only moderately between 0 and 200 μg of condensed tannins ml-1. However, at 300 μg ml-1, filter paper digestion was dramatically reduced and at 400 μg ml-1, almost no filter paper was digested. F. succinogenes S85 was seen to form digestive grooves on the surface of cellulose, and at 200 μg ml-1, digestive pits were formed which penetrated into the interior of cellulose fibers. Cells grown with condensed tannins (100 to 300 μg ml-1) possessed large amounts of surface material, and although this material may have been capsular carbohydrate, its osmiophilic nature suggested that it had arisen from the formation of tannin-protein complexes on the cell surface. The presence of electron-dense extracellular material suggested that similar complexes were formed with extracellular protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号