首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
《Endocrine practice》2021,27(6):505-537
ObjectiveTo provide evidence-based recommendations regarding the use of advanced technology in the management of persons with diabetes mellitus to clinicians, diabetes-care teams, health care professionals, and other stakeholders.MethodsThe American Association of Clinical Endocrinology (AACE) conducted literature searches for relevant articles published from 2012 to 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established AACE protocol for guideline development.Main Outcome MeasuresPrimary outcomes of interest included hemoglobin A1C, rates and severity of hypoglycemia, time in range, time above range, and time below range.ResultsThis guideline includes 37 evidence-based clinical practice recommendations for advanced diabetes technology and contains 357 citations that inform the evidence base.RecommendationsEvidence-based recommendations were developed regarding the efficacy and safety of devices for the management of persons with diabetes mellitus, metrics used to aide with the assessment of advanced diabetes technology, and standards for the implementation of this technology.ConclusionsAdvanced diabetes technology can assist persons with diabetes to safely and effectively achieve glycemic targets, improve quality of life, add greater convenience, potentially reduce burden of care, and offer a personalized approach to self-management. Furthermore, diabetes technology can improve the efficiency and effectiveness of clinical decision-making. Successful integration of these technologies into care requires knowledge about the functionality of devices in this rapidly changing field. This information will allow health care professionals to provide necessary education and training to persons accessing these treatments and have the required expertise to interpret data and make appropriate treatment adjustments.  相似文献   

2.
ObjectiveType 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD) are closely related, and antidiabetic medications have been shown to be potential therapeutics in NAFLD. Using a network meta-analysis, we sought to examine the effectiveness of antidiabetic agents for the treatment of NAFLD in patients with type 2 diabetes mellitus.MethodsMedline and Embase were searched for randomized controlled trials relating to the use of antidiabetic agents, including sodium-glucose transport protein 2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor gamma (PPARγ) agonists, biguanides, sulfonylureas and insulin, on NAFLD in patients with diabetes. The p-score was used as a surrogate marker of effectiveness.ResultsA total of 14 articles were included in the analysis. PPARγ agonists were ranked as the best treatment in steatosis reduction, resulting in the greatest reduction of steatosis. There was statistical significance between PPARγ agonists [mean difference (MD): ?6.02%, confidence interval (CI): ?10.37% to ?1.67%] and SGLT2 inhibitors (MD: ?2.60%, CI: ?4.87% to ?0.33%) compared with standard of care for steatosis reduction. Compared with PPARγ agonists, SGLT2 inhibitors resulted in a statistical significant reduction in fibrosis (MD: ?0.06, CI: ?0.10 to ?0.02). Body mass index reduction was highest in SGLT2 inhibitors and glucagon-like peptide-1 receptor agonists. Additionally, SGLT2 inhibitors were ranked as the best treatment for increasing high-density lipoprotein and reducing low-density lipoprotein.ConclusionGlucagon-like peptide-1 receptor agonists and SGLT2 inhibitors were suitable alternatives for the treatment of NAFLD in those with type 2 diabetes mellitus with a reduction in body mass index, fibrosis, and steatosis. SGLT2 inhibitors also have the added benefit of lipid modulation.  相似文献   

3.
4.
《Endocrine practice》2014,20(9):956-976
Objective/MethodsThe American Association of Clinical Endocrinologists/American College of Endocrinology “Consensus conference on obesity: building an evidence base for comprehensive action” convened March 23-25, 2014, in Washington, D.C. The premise of the conference was that by bringing together stakeholders in U.S. obesity care, representing the biomedical and public health models, new information would emerge to formulate actionable recommendations.ResultsKey conference findings include 5 affirmed and 8 emergent concepts. These concepts include the need for a medically meaningful and actionable diagnosis of obesity, research that evaluates and refines a complications- centric clinical approach to obesity, the need for a better understanding of reimbursement mechanisms and the value associated with obesity prevention and management, increased nutrition and obesity education, and enhanced public awareness and health literacy.ConclusionNext steps include deriving a more robust medical definition of obesity, translation of the affirmed and emergent concepts into actionable recommendations in the interests of patients with obesity, and developing logistics for effective implementation. (Endocr Pract. 2014; 20:956-976)  相似文献   

5.
《Endocrine practice》2011,17(3):456-520
ObjectiveThyrotoxicosis has multiple etiologies, manifestations, and potential therapies. Appropriate treatment requires an accurate diagnosis and is influenced by coexisting medical conditions and patient preference. This article describes evidence-based clinical guidelines for the management of thyrotoxicosis that would be useful to generalist and subspeciality physicians and others providing care for patients with this condition.MethodsThe development of these guidelines was commissioned by the American Thyroid Association in association with the American Association of Clinical Endocrinologists. The American Thyroid Association and American Association of Clinical Endocrinologists assembled a task force of expert clinicians who authored this report. The task force examined relevant literature using a systematic PubMed search supplemented with additional published materials. An evidence-based medicine approach that incorporated the knowledge and experience of the panel was used to develop the text and a series of specific recommendations. The strength of the recommendations and the quality of evidence supporting each was rated according to the approach recommended by the Grading of Recommendations, Assessment, Development, and Evaluation Group.ResultsClinical topics addressed include the initial evaluation and management of thyrotoxicosis; management of Graves’ hyperthyroidism using radioactive iodine, antithyroid drugs, or surgery; management of toxic multinodular goiter or toxic adenoma using radioactive iodine or surgery; Graves’ disease in children, adolescents, or pregnant patients; subclinical hyperthyroidism; hyperthyroidism in patients with Graves’ ophthalmopathy; and management of other miscellaneous causes of thyrotoxicosis.ConclusionsOne hundred evidence-based recommendations were developed to aid in the care of patients with thyrotoxicosis and to share what the task force believes is current, rational, and optimal medical practice.  相似文献   

6.
《Endocrine practice》2009,15(6):540-559
This report presents an algorithm to assist primary care physicians, endocrinologists, and others in the management of adult, nonpregnant patients with type 2 diabetes mellitus. In order to minimize the risk of diabetes-related complications, the goal of therapy is to achieve a hemoglobin A1c (A1C) of 6.5% or less, with recognition of the need for individualization to minimize the risks of hypoglycemia. We provide therapeutic pathways stratified on the basis of current levels of A1C, whether the patient is receiving treatment or is drug naïve. We consider monotherapy, dual therapy, and triple therapy, including 8 major classes of medications (biguanides, dipeptidyl-peptidase-4 inhibitors, incretin mimetics, thiazolidinediones, α-glucosidase inhibitors, sulfonylureas, meglitinides, and bile acid sequestrants) and insulin therapy (basal, premixed, and multiple daily injections), with or without orally administered medications. We prioritize choices of medications according to safety, risk of hypoglycemia, efficacy, simplicity, anticipated degree of patient adherence, and cost of medications. We recommend only combinations of medications approved by the US Food and Drug Administration that provide complementary mechanisms of action. It is essential to monitor therapy with A1C and self-monitoring of blood glucose and to adjust or advance therapy frequently (every 2 to 3 months) if the appropriate goal for each patient has not been achieved. We provide a flowchart and table summarizing the major considerations. This algorithm represents a consensus of 14 highly experienced clinicians, clinical researchers, practitioners, and academicians and is based on the American Association of Clinical Endocrinologists/American College of Endocrinology Diabetes Guidelines and the recent medical literature. (Endocr Pract. 2009;15:540-559)  相似文献   

7.
《Endocrine practice》2012,18(6):988-1028
ObjectiveHypothyroidism has multiple etiologies and manifestations. Appropriate treatment requires an accurate diagnosis and is influenced by coexisting medical conditions. This paper describes evidence-based clinical guidelines for the clinical management of hypothyroidism in ambulatory patients.MethodsThe development of these guidelines was commissioned by the American Association of Clinical Endocrinologists (AACE) in association with American Thyroid Association (ATA). AACE and the ATA assem bled a task force of expert clinicians who authored this article. The authors examined relevant literature and took an evidence-based medicine approach that incor porated their knowledge and experience to develop a series of specific recommendations and the rationale for these recommendations. The strength of the recommen dations and the quality of evidence supporting each was rated according to the approach outlined in the American Association of Clinical Endocrinologists Protocol for Standardized Production of Clinical Guidelines—2010 update.ResultsTopics addressed include the etiology, epide miology, clinical and laboratory evaluation, management, and consequences of hypothyroidism. Screening, treatment of subclinical hypothyroidism, pregnancy, and areas for future research are also covered.ConclusionsFifty-two evidence-based recommenda tions and subrecommendations were developed to aid in the care of patients with hypothyroidism and to share what the authors believe is current, rational, and optimal medi cal practice for the diagnosis and care of hypothyroidism. A serum thyrotropin is the single best screening test for primary thyroid dysfunction for the vast majority of outpa tient clinical situations. The standard treatment is replace ment with L-thyroxine. The decision to treat subclinical hypothyroidism when the serum thyrotropin is less than 10 mIU/L should be tailored to the individual patient.  相似文献   

8.
《Endocrine practice》2016,22(4):476-501
The American Association of Clinical Endocrinologists (AACE) and American College of Endocrinology (ACE) convened their first Workshop for recommendations to optimize Clinical Practice Algorithm (CPA) development for Latin America (LA) in diabetes (focusing on glycemic control), obesity (focusing on weight loss), thyroid (focusing on thyroid nodule diagnostics), and bone (focusing on postmenopausal osteoporosis) on February 28, 2015, in San Jose, Costa Rica. A standardized methodology is presented incorporating various transculturalization factors: resource availability (including imaging equipment and approved pharmaceuticals), health care professional and patient preferences, lifestyle variables, socio-economic parameters, web-based global accessibility, electronic implementation, and need for validation protocols. A standardized CPA template with node-specific recommendations to assist the local transculturalization process is provided. Participants unanimously agreed on the following five overarching principles for LA: (1) there is only one level of optimal endocrine care, (2) hemoglobin A1C should be utilized at every level of diabetes care, (3) nutrition education and increased pharmaceutical options are necessary to optimize the obesity care model, (4) quality neck ultrasound must be part of an optimal thyroid nodule care model, and (5) more scientific evidence is needed on osteoporosis prevalence and cost to justify intervention by governmental health care authorities. This 2015 AACE/ACE Workshop marks the beginning of a structured activity that assists local experts in creating culturally sensitive, evidence-based, and easy-to-implement tools for optimizing endocrine care on a global scale.Abbreviations:A1C = glycated hemoglobinAACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyBG = blood glucoseBMI = body mass indexCPA = Clinical Practice AlgorithmCPG = Clinical Practice GuidelineCVD = cardiovascular diseaseDXA = dual-energy X-ray absorptiometryEDC = endocrine-disrupting compoundFBG = fasting blood glucoseFNA = fine-needle aspirationHCP = health care professionalLA = Latin AmericaPAACE = Pan-American AACESU = sulfonylureaT2D = type 2 diabetestDNA = transcultural Diabetes Nutrition AlgorithmTSH = thyroid-stimulating hormoneWC = waist circumferenceWHO = World Health Organization  相似文献   

9.
《Endocrine practice》2023,29(6):417-427
ObjectiveTo focus on the intersection of perception, diagnosis, stigma, and weight bias in the management of obesity and obtain consensus on actionable steps to improve care provided for persons with obesity.MethodsThe American Association of Clinical Endocrinology (AACE) convened a consensus conference of interdisciplinary health care professionals to discuss the interplay between the diagnosis of obesity using adiposity-based chronic disease (ABCD) nomenclature and staging, weight stigma, and internalized weight bias (IWB) with development of actionable guidance to aid clinicians in mitigating IWB and stigma in that context.ResultsThe following affirmed and emergent concepts were proposed: (1) obesity is ABCD, and these terms can be used in differing ways to communicate; (2) classification categories of obesity should have improved nomenclature across the spectrum of body mass index (BMI) using ethnic-specific BMI ranges and waist circumference (WC); (3) staging the clinical severity of obesity based on the presence and severity of ABCD complications may reduce weight-centric contribution to weight stigma and IWB; (4) weight stigma and internalized bias are both drivers and complications of ABCD and can impair quality of life, predispose to psychological disorders, and compromise the effectiveness of therapeutic interventions; (5) the presence and of stigmatization and IWB should be assessed in all patients and be incorporated into the staging of ABCD severity; and (6) optimal care will necessitate increased awareness and the development of educational and interventional tools for health care professionals that address IWB and stigma.ConclusionsThe consensus panel has proposed an approach for integrating bias and stigmatization, psychological health, and social determinants of health in a staging system for ABCD severity as an aid to patient management. To effectively address stigma and IWB within a chronic care model for patients with obesity, there is a need for health care systems that are prepared to provide evidence-based, person-centered treatments; patients who understand that obesity is a chronic disease and are empowered to seek care and participate in behavioral therapy; and societies that promote policies and infrastructure for bias-free compassionate care, access to evidence-based interventions, and disease prevention.  相似文献   

10.
ObjectiveThe global epidemic of obesity and type 2 diabetes mellitus is the main driver of the growing global prevalence of nonalcoholic fatty liver disease (NAFLD). We aimed to review the current literature on NAFLD and nonalcoholic steatohepatitis (NASH) as it impacts children and adults.MethodsWe performed a literature search on fatty liver specifically NAFLD and NASH among children and adults.ResultsThe prevalence of NAFLD in children ranges from 8% to 12%, while the prevalence in adults ranges 25% to 48%. The prevalence of NASH among children with NAFLD is 23%, while it ranges from 13% to 65% in adults. There are similar risk factors for NAFLD among children and adults. However, in children, the diagnostic tests in the studies of NAFLD are limited to the elevation of the alanine aminotransferase level or a liver biopsy. In adults, additional diagnostic modalities, including noninvasive tests, have been used. From the spectrum of NAFLD, patients with NASH are predominantly at risk of progressive liver disease to cirrhosis and liver-related mortality. NAFLD is associated with impairment of health-related quality of life and substantial economic burden.ConclusionThe comprehensive burden (clinical, health-related quality of life, and economic) of NAFLD is high and increasing.  相似文献   

11.
《Endocrine practice》2018,24(11):995-1011
The American Association of Clinical Endocrinologists (AACE) has created a dysglycemia-based chronic disease (DBCD) multimorbidity care model consisting of four distinct stages along the insulin resistance-prediabetes-type 2 diabetes (T2D) spectrum that are actionable in a preventive care paradigm to reduce the potential impact of T2D, cardiometabolic risk, and cardiovascular events. The controversy of whether there is value, cost-effectiveness, or clinical benefit of diagnosing and/or managing the prediabetes state is resolved by regarding the problem, not in isolation, but as an intermediate stage in the continuum of a progressive chronic disease with opportunities for multiple concurrent prevention strategies. In this context, stage 1 represents “insulin resistance,” stage 2 “prediabetes,” stage 3 “type 2 diabetes,” and stage 4 “vascular complications.” This model encourages earliest intervention focusing on structured lifestyle change. Further scientific research may eventually reclassify stage 2 DBCD prediabetes from a predisease to a true disease state. This position statement is consistent with a portfolio of AACE endocrine disease care models, including adiposity-based chronic disease, that prioritize patient-centered care, evidence-based medicine, complexity, multimorbid chronic disease, the current health care environment, and a societal mandate for a higher value attributed to good health. Ultimately, transformative changes in diagnostic coding and reimbursement structures for prediabetes and T2D can provide improvements in population-based endocrine health care.Abbreviations: A1C = hemoglobin A1c; AACE = American Association of Clinical Endocrinologists; ABCD = adiposity-based chronic disease; CVD = cardiovascular disease; DBCD = dysglycemia-based chronic disease; FPG = fasting plasma glucose; GLP-1 = glucagon-like peptide-1; MetS = metabolic syndrome; T2D = type 2 diabetes  相似文献   

12.
《Endocrine practice》2023,29(5):305-340
ObjectiveThis consensus statement provides (1) visual guidance in concise graphic algorithms to assist with clinical decision-making of health care professionals in the management of persons with type 2 diabetes mellitus to improve patient care and (2) a summary of details to support the visual guidance found in each algorithm.MethodsThe American Association of Clinical Endocrinology (AACE) selected a task force of medical experts who updated the 2020 AACE Comprehensive Type 2 Diabetes Management Algorithm based on the 2022 AACE Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan and consensus of task force authors.ResultsThis algorithm for management of persons with type 2 diabetes includes 11 distinct sections: (1) Principles for the Management of Type 2 Diabetes; (2) Complications-Centric Model for the Care of Persons with Overweight/Obesity; (3) Prediabetes Algorithm; (4) Atherosclerotic Cardiovascular Disease Risk Reduction Algorithm: Dyslipidemia; (5) Atherosclerotic Cardiovascular Disease Risk Reduction Algorithm: Hypertension; (6) Complications-Centric Algorithm for Glycemic Control; (7) Glucose-Centric Algorithm for Glycemic Control; (8) Algorithm for Adding/Intensifying Insulin; (9) Profiles of Antihyperglycemic Medications; (10) Profiles of Weight-Loss Medications (new); and (11) Vaccine Recommendations for Persons with Diabetes Mellitus (new), which summarizes recommendations from the Advisory Committee on Immunization Practices of the U.S. Centers for Disease Control and Prevention.ConclusionsAligning with the 2022 AACE diabetes guideline update, this 2023 diabetes algorithm update emphasizes lifestyle modification and treatment of overweight/obesity as key pillars in the management of prediabetes and diabetes mellitus and highlights the importance of appropriate management of atherosclerotic risk factors of dyslipidemia and hypertension. One notable new theme is an emphasis on a complication-centric approach, beyond glucose levels, to frame decisions regarding first-line pharmacologic choices for the treatment of persons with diabetes. The algorithm also includes access/cost of medications as factors related to health equity to consider in clinical decision-making.  相似文献   

13.
ObjectiveThe aim of this case-based clinical review was to provide a practical approach for clinicians regarding the management of patients with immune checkpoint inhibitor (ICI)-mediated endocrinopathies.MethodsA literature search of PubMed, Embase, and Scopus was conducted using appropriate keywords. The discussions and strategies for the diagnosis and management of ICI-mediated endocrinopathies are based on evidence available from prospective, randomized clinical studies; cohort studies; cross-sectional studies; case-based studies; and an expert consensus.ResultsImmunotherapy with ICIs has transformed the treatment landscape of diverse types of cancers but frequently results in immune-mediated endocrinopathies that can cause acute and persistent morbidity and, rarely, death. The patterns of endocrinopathies differ between the inhibitors of the cytotoxic T-lymphocyte antigen 4 and programmed cell death protein 1 or programmed cell death protein 1 ligand pathways but most often involve the thyroid and pituitary glands. The less common but important presentations include insulin-deficient diabetes mellitus, primary adrenal insufficiency, primary hypoparathyroidism, central diabetes insipidus, primary hypogonadism, and pancreatitis, with or without subsequent progression to diabetes mellitus or exocrine insufficiency.ConclusionIn recent years, with increasing numbers of patients with cancer being treated with ICIs, more clinicians in a variety of specialties have been called upon to diagnose and treat ICI-mediated endocrinopathies. Herein, we reviewed case scenarios of various clinical manifestations and emphasized the need for a high index of clinical suspicion by all clinicians caring for these patients, including endocrinologists, oncologists, primary care providers, and emergency department physicians. We also provided diagnostic and therapeutic approaches for ICI-induced endocrinopathies and proposed that patients on ICI therapy be evaluated and treated by a multidisciplinary team in collaboration with endocrinologists.  相似文献   

14.
《Endocrine practice》2016,22(7):842-884
Objective: Development of these guidelines is mandated by the American Association of Clinical Endocrinologists (AACE) Board of Directors and the American College of Endocrinology (ACE) Board of Trustees and adheres to published AACE protocols for the standardized production of clinical practice guidelines (CPGs).Methods: Recommendations are based on diligent review of clinical evidence with transparent incorporation of subjective factors.Results: There are 9 broad clinical questions with 123 recommendation numbers that include 160 specific statements (85 [53.1%] strong [Grade A], 48 [30.0%] intermediate [Grade B], and 11 [6.9%] weak [Grade C], with 16 [10.0%] based on expert opinion [Grade D]) that build a comprehensive medical care plan for obesity. There were 133 (83.1%) statements based on strong (best evidence level [BEL] 1 = 79 [49.4%]) or intermediate (BEL 2 = 54 [33.7%]) levels of scientific substantiation. There were 34 (23.6%) evidence-based recommendation grades (Grades A-C = 144) that were adjusted based on subjective factors. Among the 1,788 reference citations used in this CPG, 524 (29.3%) were based on strong (evidence level [EL] 1), 605 (33.8%) were based on intermediate (EL 2), and 308 (17.2%) were based on weak (EL 3) scientific studies, with 351 (19.6%) based on reviews and opinions (EL 4).Conclusion: The final recommendations recognize that obesity is a complex, adiposity-based chronic disease, where management targets both weight-related complications and adiposity to improve overall health and quality of life. The detailed evidence-based recommendations allow for nuanced clinical decision-making that addresses real-world medical care of patients with obesity, including screening, diagnosis, evaluation, selection of therapy, treatment goals, and individualization of care. The goal is to facilitate high-quality care of patients with obesity and provide a rational, scientific approach to management that optimizes health outcomes and safety.Abbreviations:A1C = hemoglobin A1cAACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyAMA = American Medical AssociationBEL = best evidence levelBMI = body mass indexCCO = Consensus Conference on ObesityCPG = clinical practice guidelineCSS = cross-sectional studyCVD = cardiovascular diseaseEL = evidence levelFDA = Food and Drug AdministrationGERD = gastroesophageal reflux diseaseHDL-c = high-density lipoprotein cholesterolIFG = impaired fasting glucoseIGT = impaired glucose toleranceLDL-c = low-density lipoprotein cholesterolMNRCT = meta-analysis of non-randomized prospective or case-controlled trialsNE = no evidencePCOS = polycystic ovary syndromeRCT = randomized controlled trialSS = surveillance studyU.S = United States  相似文献   

15.
ObjectiveObesity has been globally recognized as a critically important disease by professional medical organizations, in addition to the World Health Organization and American Medical Association, but health care systems, medical teams, and the public have been slow to embrace this concept.MethodsThe American Association of Clinical Endocrinology staff drafted a survey, and 2 endocrinologists independently reviewed the survey’s questions and modified the survey instrument. The survey included questions related to practice and patient demographics, awareness about obesity, treatment of obesity, barriers to improving obesity outcomes, digital health, cognitive behavioral therapy, lifestyle medicine, antiobesity medications, weight stigma, and social determinants of health. The survey was emailed to 493 endocrinologists, with 305 (62%) completing the study.ResultsOf the responders, 98% agreed that obesity is a disease, whereas 2% neither agreed nor disagreed. Of the respondents, 53% were familiar with the term “adiposity-based chronic disease” and 13% were certified by the American Board of Obesity Medicine. Of the respondents, 57% used published obesity guidelines as a resource for treating patients with obesity. Most endocrinologists recommended dietary and lifestyle changes, but fewer prescribed an antiobesity medication or recommended bariatric surgery. American Board of Obesity Medicine-certified endocrinologists were more likely to use a multidisciplinary approach.ConclusionSelf-reported knowledge and practices in the management of obesity highlight the importance of a multimodal approach to obesity and foster collaboration among health care professionals. It is necessary to raise awareness about obesity among clinicians, identify knowledge gaps, and create educational tools to address those gaps.  相似文献   

16.
《Endocrine practice》2017,23(4):479-497
Objective: The development of these guidelines is mandated by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPGs).Methods: Each Recommendation is based on a diligent review of the clinical evidence with transparent incorporation of subjective factors.Results: The Executive Summary of this document contains 87 Recommendations of which 45 are Grade A (51.7%), 18 are Grade B (20.7%), 15 are Grade C (17.2%), and 9 (10.3%) are Grade D. These detailed, evidence-based recommendations allow for nuance-based clinical decision making that addresses multiple aspects of real-world medical care. The evidence base presented in the subsequent Appendix provides relevant supporting information for Executive Summary Recommendations. This update contains 695 citations of which 202 (29.1 %) are evidence level (EL) 1 (strong), 137 (19.7%) are EL 2 (intermediate), 119 (17.1%) are EL 3 (weak), and 237 (34.1%) are EL 4 (no clinical evidence).Conclusion: This CPG is a practical tool that endocrinologists, other healthcare professionals, regulatory bodies and health-related organizations can use to reduce the risks and consequences of dyslipidemia. It provides guidance on screening, risk assessment, and treatment recommendations for a range of patients with various lipid disorders. These recommendations emphasize the importance of treating low-density lipoprotein cholesterol (LDL-C) in some individuals to lower goals than previously recommended and support the measurement of coronary artery calcium scores and inflammatory markers to help stratify risk. Special consideration is given to patients with diabetes, familial hypercholesterolemia, women, and pediatric patients with dyslipidemia. Both clinical and cost-effectiveness data are provided to support treatment decisions.AbbreviationsA1C = hemoglobin A1CACE = American College of EndocrinologyACS = acute coronary syndromeAHA = American Heart AssociationASCVD = atherosclerotic cardiovascular diseaseATP = Adult Treatment Panelapo = apolipoproteinBEL = best evidence levelCKD = chronic kidney diseaseCPG = clinical practice guidelinesCVA = cerebrovascular accidentEL = evidence levelFH = familial hypercholesterolemiaHDL-C = high-density lipoprotein cholesterolHeFH = heterozygous familial hypercholesterolemiaHIV = human immunodeficiency virusHoFH = homozygous familial hypercholesterolemiahsCRP = high-sensitivity C-reactive proteinLDL-C = low-density lipoprotein cholesterolLp-PLA2 = lipoprotein-associated phospholipase A2MESA = Multi-Ethnic Study of AtherosclerosisMetS = metabolic syndromeMI = myocardial infarctionNCEP = National Cholesterol Education ProgramPCOS = polycystic ovary syndromePCSK9 = proprotein convertase subtilisin/kexin type 9T1DM = type 1 diabetes mellitusT2DM = type 2 diabetes mellitusTG = triglyceridesVLDL-C = very low-density lipoprotein cholesterol  相似文献   

17.
《Endocrine practice》2019,25(11):1191-1232
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPG).Methods: Recommendations are based on diligent reviews of clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols.Results: The Executive Summary of this 2019 updated guideline contains 58 numbered recommendations: 12 are Grade A (21%), 19 are Grade B (33%), 21 are Grade C (36%), and 6 are Grade D (10%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 357 citations of which 51 (14%) are evidence level (EL) 1 (strong), 168 (47%) are EL 2 (intermediate), 61 (17%) are EL 3 (weak), and 77 (22%) are EL 4 (no clinical evidence).Conclusion: This CPG is a practical tool that practicing endocrinologists and regulatory bodies can refer to regarding the identification, diagnosis, and treatment of adults and patients transitioning from pediatric to adult-care services with growth hormone deficiency (GHD). It provides guidelines on assessment, screening, diagnostic testing, and treatment recommendations for a range of individuals with various causes of adult GHD. The recommendations emphasize the importance of considering testing patients with a reasonable level of clinical suspicion of GHD using appropriate growth hormone (GH) cut-points for various GH–stimulation tests to accurately diagnose adult GHD, and to exercise caution interpreting serum GH and insulin-like growth factor-1 (IGF-1) levels, as various GH and IGF-1 assays are used to support treatment decisions. The intention to treat often requires sound clinical judgment and careful assessment of the benefits and risks specific to each individual patient. Unapproved uses of GH, long-term safety, and the current status of long-acting GH preparations are also discussed in this document.LAY ABSTRACTThis updated guideline provides evidence-based recommendations regarding the identification, screening, assessment, diagnosis, and treatment for a range of individuals with various causes of adult growth-hormone deficiency (GHD) and patients with childhood-onset GHD transitioning to adult care. The update summarizes the most current knowledge about the accuracy of available GH–stimulation tests, safety of recombinant human GH (rhGH) replacement, unapproved uses of rhGH related to sports and aging, and new developments such as long-acting GH preparations that use a variety of technologies to prolong GH action. Recommendations offer a framework for physicians to manage patients with GHD effectively during transition to adult care and adulthood. Establishing a correct diagnosis is essential before consideration of replacement therapy with rhGH. Since the diagnosis of GHD in adults can be challenging, GH–stimulation tests are recommended based on individual patient circumstances and use of appropriate GH cut-points. Available GH–stimulation tests are discussed regarding variability, accuracy, reproducibility, safety, and contraindications, among other factors. The regimen for starting and maintaining rhGH treatment now uses individualized dose adjustments, which has improved effectiveness and reduced reported side effects, dependent on age, gender, body mass index, and various other individual characteristics. With careful dosing of rhGH replacement, many features of adult GHD are reversible and side effects of therapy can be minimized. Scientific studies have consistently shown rhGH therapy to be beneficial for adults with GHD, including improvements in body composition and quality of life, and have demonstrated the safety of short- and long-term rhGH replacement.Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AHSG = alpha-2-HS-glycoprotein; AO-GHD = adult-onset growth hormone deficiency; ARG = arginine; BEL = best evidence level; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; CO-GHD = childhood-onset growth hormone deficiency; CPG = clinical practice guideline; CRP = C-reactive protein; DM = diabetes mellitus; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = Food and Drug Administration; FD-GST = fixed-dose glucagon stimulation test; GeNeSIS = Genetics and Neuroendocrinology of Short Stature International Study; GH = growth hormone; GHD = growth hormone deficiency; GHRH = growth hormone–releasing hormone; GST = glucagon stimulation test; HDL = high-density lipoprotein; HypoCCS = Hypopituitary Control and Complications Study; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth factor–binding protein; IGHD = isolated growth hormone deficiency; ITT = insulin tolerance test; KIMS = Kabi International Metabolic Surveillance; LAGH = long-acting growth hormone; LDL = low-density lipoprotein; LIF = leukemia inhibitory factor; MPHD = multiple pituitary hormone deficiencies; MRI = magnetic resonance imaging; P-III-NP = procollagen type-III amino-terminal pro-peptide; PHD = pituitary hormone deficiencies; QoL = quality of life; rhGH = recombinant human growth hormone; ROC = receiver operating characteristic; RR = relative risk; SAH = subarachnoid hemorrhage; SDS = standard deviation score; SIR = standardized incidence ratio; SN = secondary neoplasms; T3 = triiodothyronine; TBI = traumatic brain injury; VDBP = vitamin D-binding protein; WADA = World Anti-Doping Agency; WB-GST = weight-based glucagon stimulation test  相似文献   

18.
《Endocrine practice》2016,22(8):1008-1021
Objective/Methods: Barriers to continuous glucose monitoring (CGM) use continue to hamper adoption of this valuable technology for the management of diabetes. The American Association of Clinical Endocrinologists and the American College of Endocrinology convened a public consensus conference February 20, 2016, to review available CGM data and propose strategies for expanding CGM access.Results: Conference participants agreed that evidence supports the benefits of CGM in type 1 diabetes and that these benefits are likely to apply whenever intensive insulin therapy is used, regardless of diabetes type. CGM is likely to reduce healthcare resource utilization for acute and chronic complications, although real-world analyses are needed to confirm potential cost savings and quality of life improvements. Ongoing technological advances have improved CGM accuracy and usability, but more innovations in human factors, data delivery, reporting, and interpretation are needed to foster expanded use. The development of a standardized data report using similar metrics across all devices would facilitate clinician and patient understanding and utilization of CGM. Expanded CGM coverage by government and private payers is an urgent need.Conclusion: CGM improves glycemic control, reduces hypoglycemia, and may reduce overall costs of diabetes management. Expanding CGM coverage and utilization is likely to improve the health outcomes of people with diabetes.Abbreviations:A1C = glycated hemoglobinAACE = American Association of Clinical EndocrinologistsACE = American College of EndocrinologyASPIRE = Automation to Simulate Pancreatic Insulin ResponseCGM = continuous glucose monitoringHRQOL = health-related quality of lifeICER = incremental cost-effectiveness ratioJDRF = Juvenile Diabetes Research FoundationMARD = mean absolute relative differenceMDI = multiple daily injectionsQALY = quality-adjusted life yearsRCT = randomized, controlled trialSAP = sensor-augmented pumpSMBG = self-monitoring of blood glucoseSTAR = Sensor-Augmented Pump Therapy for A1C ReductionT1D = type 1 diabetesT2D = type 2 diabetes  相似文献   

19.

Background & Aims

The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD). However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients.

Methods

N = 52 patients (n = 16 NAFLD and n = 36 Non-alcoholic steatohepatitis (NASH) patients) and n = 50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration.

Results

Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001). In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH.

Conclusions

Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.  相似文献   

20.
非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)是慢性肝损伤的主要病因之一。据估计,大约有20%的成人有非酒精性脂肪性肝病,2%-3%发展成非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)。NASH是NAFLD的渐进形式,并可能导致肝硬化和肝细胞癌。NAFLD不仅增加了肝病患者死亡率,作为代谢综合征,还增加了肥胖、2型糖尿病及高脂血症的发病率。肌球蛋白轻链激酶(MLCK)是细胞收缩的关键酶,可使肌球蛋白轻链磷酸化(MLC),促使肌动蛋白收缩,破坏细胞间的紧密连接蛋白,使细胞骨架收缩,进而使肠上皮通透性增加,肠粘膜机械屏障遭到破坏,致使NAFLD的病情进一步发展。MLCK在NAFLD的发生及发展中起着重要作用。NAFLD严重威胁人类健康,影响人们的生活质量及生存质量。为NAFLD患者寻找崭新的治疗方法是极其必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号