首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the effects of oak tannin extract (OTE) added in forage before ensiling on dairy cows fed at 92% of their digestible protein requirements. Six multiparous lactating Holstein cows were used in a crossover design (two treatments × two periods). The control treatment (CON) was based on a diet including 50% of grass silage, whereas the experimental treatment (TAN) included grass silage sprayed with OTE (26 g/kg DM) just before baling. Milk yield (on average 24 kg fat protein corrected milk per day) was not affected, but both milk and rumen fatty acids profiles were impacted by OTE. Nitrogen intake (415 g N per cow per day) and nitrogen use efficiency (NUE; 0.25 on average) were not affected, but a shift from urine (−8% of N intake relatively to control, P = 0.06) to faecal N (+5%; P = 0.004) was observed with the TAN diet (P ≤ 0.05). Nitrogen apparent digestibility was thus reduced for TAN (−3%; P ≤ 0.05). The effect of OTE on ruminal and milk FA profiles suggests an impact on rumen microbiota. Nitrogen isotopic discrimination between animal proteins and diet (Δ15N) was evaluated as a proxy for NUE. While no differences in NUE were observed across diets, a lower Δ15N of plasma proteins was found when comparing TAN v. CON diets. This finding supports the concept that Δ15N would mainly sign the N partitioning at the metabolic level rather than the overall NUE, with the latter also being impacted by digestive processes. Our results agree with a N shift from urine to faeces, and this strategy can thus be adopted to decrease the environmental impact of ruminant protein feeding.  相似文献   

2.
Residual feed intake (RFI) is an alternative measure of feed efficiency (FE) and is calculated as the difference between actual and expected feed intake. The biological mechanisms underlying animal-to-animal variation in FE are not well understood. The aim of this study was to investigate the digestive ability of beef cows selected for RFI divergence as heifers, using two contrasted diets. Fifteen 4-year-old beef cows were selected from a total of 69 heifers based on their RFI following the feedlot test. The selected heifers were ranked into high-RFI (+ 1.02 ± 0.28, n = 8) and low-RFI (−0.73 ± 0.28, n = 7), and a digestibility trial was performed after their first lactation. Both RFI groups were offered two different diets: 100% hay or a fattening diet which consisted of a DM basis of 67% whole-plant maize silage and 33% high starch concentrates over four experimental periods (two per diet). A diet effect was observed on feed intake and apparent digestibility, whereas no diet × RFI interaction was detected (P > 0.05). Intake and apparent digestibility were higher in cows fed the fattening diet than in those fed the hay diet (P < 0.0001). DM intake (DMI) and organic matter apparent digestibility (OMd) were repeatable and positively correlated between the two subsequent periods of measurements. For the hay and fattening diets, the repeatability between periods was r = 0.71 and r = 0.73 for DMI and r = 0.87 and r = 0.48 for OMd, respectively. Moreover, both intake (r = 0.55) and OMd (r = 0.54) were positively correlated (P < 0.05) between the hay and fattening diets. Significant differences between beef cows selected for divergence in RFI as heifers were observed for digestive traits (P < 0.05), DM and organic matter (OM) apparent digestibility being higher for low-RFI cows. Overall, this study showed that apparent digestibility contributes to between-animal variation in FE in beef cows.  相似文献   

3.
Breeding values for feed intake and feed efficiency in beef cattle are generally derived indoors on high-concentrate (HC) diets. Within temperate regions of north-western Europe, however, the majority of a growing beef animal’s lifetime dietary intake comes from grazed grass and grass silage. Using 97 growing beef cattle, the objective of the current study was to assess the repeatability of both feed intake and feed efficiency across 3 successive dietary test periods comprising grass silage plus concentrates (S+C), grazed grass (GRZ) and a HC diet. Individual DM intake (DMI), DMI/kg BW and feed efficiency-related parameters, residual feed intake (RFI) and gain to feed ratio (G : F) were assessed. There was a significant correlation for DMI between the S+C and GRZ periods (r = 0.32; P < 0.01) as well as between the S+C and HC periods (r = 0.41; P < 0.001), whereas there was no association for DMI between the GRZ and HC periods. There was a significant correlation for DMI/kg BW between the S+C and GRZ periods (r = 0.33; P < 0.01) and between the S+C and HC periods (r = 0.40; P < 0.001), but there was no association for the trait between the GRZ and HC periods. There was a significant correlation for RFI between the S+C and GRZ periods (r = 0.25; P < 0.05) as well as between S+C and HC periods (r = 0.25; P < 0.05), whereas there was no association for RFI between the GRZ and HC periods. Gain to feed ratio was not correlated between any of the test periods. A secondary aspect of the study demonstrated that traits recorded in the GRZ period relating to grazing bite rate, the number of daily grazing bouts and ruminating bouts were associated with DMI (r = 0.28 to 0.42; P < 0.05 - 0.001), DMI/kg BW (r = 0.36 to 0.45; P < 0.01 - 0.001) and RFI (r = 0.31 to 0.42; P < 0.05 - 0.001). Additionally, the number of ruminating boli produced per day and per ruminating bout were associated with G : F (r = 0.28 and 0.26, respectively; P < 0.05). Results from this study demonstrate that evaluating animals for both feed intake and feed efficiency indoors on HC diets may not reflect their phenotypic performance when consuming conserved forage-based diets indoors or when grazing pasture.  相似文献   

4.
Cellular mitochondrial function has been suggested to contribute to variation in feed efficiency (FE) among animals. The objective of this study was to determine mitochondrial abundance and activities of various mitochondrial respiratory chain complexes (complex I (CI) to complex IV (CIV)) in liver and muscle tissue from beef cattle phenotypically divergent for residual feed intake (RFI), a measure of FE. Individual DM intake (DMI) and growth were measured in purebred Simmental heifers (n = 24) and bulls (n = 28) with an initial mean BW (SD) of 372 kg (39.6) and 387 kg (50.6), respectively. All animals were offered concentrates ad libitum and 3 kg of grass silage daily, and feed intake was recorded for 70 days. Residuals of the regression of DMI on average daily gain (ADG), mid-test BW0.75 and backfat (BF), using all animals, were used to compute individual RFI coefficients. Animals were ranked within sex, by RFI into high (inefficient; top third of the population), medium (middle third of population) and low (efficient; bottom third of the population) terciles. Statistical analysis was carried out using the MIXED procedure of SAS v 9.3. Overall mean ADG (SD) and daily DMI (SD) for heifers were 1.2 (0.4) and 9.1 (0.5) kg, respectively, and for bulls were 1.8 (0.3) and 9.5 (1.02) kg, respectively. Heifers and bulls ranked as high RFI consumed 10% and 15% more (P < 0.05), respectively, than their low RFI counterparts. There was no effect of RFI on mitochondrial abundance in either liver or muscle (P > 0.05). An RFI × sex interaction was apparent for CI activity in muscle. High RFI animals had an increased activity (P < 0.05) of CIV in liver tissue compared to their low RFI counterparts; however, the relevance of that observation is not clear. Our data provide no clear evidence that cellular mitochondrial function within either skeletal muscle or hepatic tissue has an appreciable contributory role to overall variation in FE among beef cattle.  相似文献   

5.
Mycotoxins are present in almost all feedstuffs used in animal nutrition but are often ignored in beef cattle systems, even though they can affect animal performance. The objective of this study was to evaluate the effects of mycotoxins and a mycotoxin adsorbent (ADS) on performance of Nellore cattle finished in a feedlot. One hundred Nellore cattle (430 ± 13 kg) were used in a randomized complete block design with a 2 × 2 factorial arrangement of treatments. The factors consisted of two diets with either natural contamination (NC) or exogenous contamination (EC) and the presence (1 g/kg of DM; ADS) or absence of a mycotoxin adsorbent. The NC and EC diets had the following contaminations, respectively: 0.00 and 10.0 µg/kg aflatoxins, 5114 and 5754 µg/kg fumonisins, 0.00 and 42.1 µg/kg trichothecenes B, 0.00 and 22.1 µg/kg trichothecenes A and 42.9 and 42.9 µg/kg fusaric acid. At the beginning of the experiment, all animals were weighed, and four randomly selected animals were slaughtered to evaluate the initial carcass weight. After 97 days of treatment, all animals were weighed and slaughtered. There was no interaction among factors for the DM intake (DMI; P = 0.92); however, there was a tendency for the EC diets to decrease the DMI by 650 g/day compared to animals fed NC diets (P = 0.09). There was a trend for interaction among factors (P = 0.08) for the average daily gain (ADG), where the greatest ADG was observed for cattle fed the NC diet (1.77 kg), and the lowest was observed for those fed the EC diet (1.51 kg). The NC + ADS and EC + ADS treatments presented intermediate values for ADG. The animals fed the NC diet had a greater final BW (596 kg) than animals fed the EC treatment (582 kg; P = 0.04). There was a tendency for interaction among factors for carcass gain (P = 0.08). Similarly to ADG, the highest carcass gain was observed for animals fed the NC diet (1.20 kg), and the lowest was observed for those fed the EC diet (1.05 kg). The NC + ADS and EC + ADS treatments presented intermediate values. The natural contamination groups had greater carcass gain than that of the EC groups, and the use of the ADS recovered part of the weight gain in animals fed the EC diet. In conclusion, mycotoxins at the levels evaluated affected the performance of beef cattle, and adsorbents may mitigate their impact.  相似文献   

6.
The objective of this study was to evaluate the relationship between muscle mitochondrial function and residual feed intake (RFI) in growing beef cattle. A 56-day feeding trial was conducted with 81 Angus × Hereford steers (initial BW = 378 ± 43 kg) from the University of California Sierra Foothills Research Station (Browns Valley, CA, USA). All steers were individually fed the same finishing ration (metabolizable energy = 3.28 Mcal/kg DM). Average daily gain (ADG), DM intake (DMI) and RFI were 1.82 ± 0.27, 8.89 ± 1.06 and 0.00 ± 0.55 kg/day, respectively. After the feeding trial, the steers were categorized into high, medium and low RFI groups. Low RFI steers consumed 13.6% less DM (P < 0.05) and had a 14.1% higher G : F ratio (P < 0.05) than the high RFI group. No differences between RFI groups were found in age, ADG or BW (P > 0.10). The most extreme individuals from the low and high RFI groups were selected to assess mitochondrial function (n = 5 low RFI and n = 6 high RFI). Mitochondrial respiration was measured using an oxygraph (Hansatech Instruments Ltd., Norfolk, UK). State 3 and State 4 respiration rates were similar between both groups (P > 0.10). Respiratory control ratios (RCRs, i.e., State 3 : State 4 oxygen uptakes) declined with animal age and were greater in low RFI steers (4.90) as compared to high RFI steers (4.26) when adjusted for age by analysis of covariance (P = 0.003). Mitochondrial complex II activity levels per gram of muscle were 42% greater in low RFI steers than in high RFI steers (P = 0.004). These data suggest that skeletal muscle mitochondria have greater reserve respiratory capacity and show greater coupling between respiration and phosphorylation in low RFI than in high RFI steers.  相似文献   

7.
In current nutrition requirements of swine, although the protein diets are formulated based on the ileal digestibility of protein and amino acid (AA), there is a difference in nitrogen utilisation among various protein diets, which might be related to the AA release kinetics. To evaluate the relationship between AA release kinetics of feed proteins and nitrogen balance in finishing pigs, pigs were fed diets based on casein (CAS) or corn gluten meal (CGM) at normal or low-protein concentrations, and the AA release patterns were assessed. A 2 × 2 full factorial experimental design was used. 24 pigs (Duroc × Landrace × Yorkshire) with an initial weight of 67.0 ± 1.8 kg were randomly assigned to consume a normal-protein casein-based diet (N.CAS, 10% CP), normal-protein corn gluten meal-based diet (N.CGM, 10% CP), low-protein casein-based diet (L.CAS, 8.5% CP), or low-protein corn gluten meal-based diet (L.CGM, 8.5% CP) for 14 days (n = 6 per group; pigs housed and fed separately). The low-protein diets were associated with a more rapid release of AAs in the early stages of gastric digestion than the normal-protein diets. The N.CAS and L.CAS diets were associated with a peak AA release at approximately 4 h during trypsin digestion, whereas N.CGM and L.CGM were at approximately 16 h. The N.CAS diet was associated with the least dispersed release curves and lowest synchronisation indexes, implying that it was associated with the best AA release synchronism, whereas the L.CGM diet was on the contrary. The nitrogen intake (NI), faecal nitrogen, urine nitrogen (UN), total nitrogen, net protein utilisation and apparent biological value (ABV) of protein of pigs fed the L.CAS or L.CGM diets were lower than those fed the N.CAS or N.CGM diets (P < 0.05). Notably, there was a difference in NI (P < 0.05) and trends with respect to UN and ABV (0.05 < P < 0.1), but no differences in retained nitrogen or apparent nitrogen digestibility between pigs fed the N.CAS or L.CAS diets and those fed the N.CGM or L.CGM diets. Pigs fed the N.CAS or N.CGM diets had higher serum concentrations of UN than pigs fed the L.CAS or L.CGM diets (P < 0.05), but there were no differences in serum total protein, albumin, triglyceride, glucose, alanine transaminase, or aspartate aminotransferase between the groups. In addition, there was an interaction between protein level and protein source on serum globulin (P < 0.05). Therefore, the diet with a better AA release synchronism can improve protein utilisation efficiency in finishing pigs and to reduce environmental pollution.  相似文献   

8.
It is difficult to separate an age-dependent fall in nitrogen use efficiency (NUE; N balance/N intake) in growing ruminants from a progressively decrease in animal protein requirements over time. This study examined the effect of dietary protein content on N partitioning, digestibility and N isotopic discrimination between the animal and its diet (Δ15Nanimal-diet) evaluated at two different fattening periods (early v. late). Twenty-four male Romane lambs (age: 19 ± 4.0 days; BW: 8.3 ± 1.39 kg) were equally allocated to three dietary CP treatments (15%, 17% and 20% CP on a DM basis). Lambs were reared with their mothers until weaning, thereafter housed in individual pens until slaughter (45 kg BW). During the post-weaning period, lambs were allocated twice (early fattening (30 days post-weaning) and late fattening (60 days post-weaning)) to metabolic cages for digestibility and N balance study. When diet CP content increased, the average daily gain of lambs increased (P < 0.05) while the age at slaughter decreased (P = 0.01), but no effect was observed on feed efficiency (P > 0.10). Diet CP content had limited effect on lamb carcass traits. Higher fibre digestibility was observed at the early v. late fattening period (P < 0.001). The N intake and the urinary N excretion increased when diet CP content increased (P < 0.001) and when shifting from early to late fattening period (P < 0.001). Faecal N excretion (P = 0.14) and N balance (P > 0.10) were not affected by diet CP content. Nitrogen digestibility increased (P < 0.001) as the diet CP content increased and on average it was greater at late v. early fattening period (P = 0.02). The NUE decreased (P = 0.001) as the diet CP content increased and as the lamb became older (P < 0.001). However, the age-dependent fall in NUE observed was lower at high v. low dietary CP content (CP × age interaction; P = 0.04). The Δ15Nanimal-diet was positively correlated (P < 0.05) with N intake (r = 0.59), excretion of faecal N (r = 0.41), urinary N (r = 0.69) and total manure N (r = 0.64), while negatively correlated with NUE (r = −0.57). Overall, the experiment showed NUE was lower in older lambs and when lambs were fed high diet CP content, and that Δ15Nanimal-diet was a useful indicator not only for NUE but also for urinary N excretion, which is a major environmental pollution factor on farm.  相似文献   

9.
Identifying animals that are superior in terms of feed efficiency may improve the profitability and sustainability of the beef cattle sector. However, measuring feed efficiency is costly and time-consuming. Biomarkers should thus be explored and validated to predict between-animal variation of feed efficiency for both genetic selection and precision feeding. In this work, we aimed to assess and validate two previously identified biomarkers of nitrogen (N) use efficiency in ruminants, plasma urea concentrations and the 15N natural abundance in plasma proteins (plasma δ15N), to predict the between-animal variation in feed efficiency when animals were fed two contrasted diets (high-starch vs high-fibre diets). We used an experimental network design with a total of 588 young bulls tested for feed efficiency through two different traits (feed conversion efficiency [FCE] and residual feed intake [RFI]) during at least 6 months in 12 cohorts (farm × period combination). Animals reared in the same cohort, receiving the same diet and housed in the same pen, were considered as a contemporary group (CG). To analyse between-animal variations and explore relationships between biomarkers and feed efficiency, two statistical approaches, based either on mixed-effect models or regressions from residuals, were conducted to remove the between-CG variability. Between-animal variation of plasma δ15N was significantly correlated with feed efficiency measured through the two criteria traits and regardless of the statistical approach. Conversely, plasma urea was not correlated to FCE and showed only a weak, although significant, correlation with RFI. The response of plasma δ15N to FCE variations was higher when animals were fed a high-starch compared to a high-fibre diet. In addition, we identified two dietary factors, the metabolisable protein to net energy ratio and the rumen protein balance that influenced the relation between plasma δ15N and FCE variations. Concerning the genetic evaluation, and despite the moderate heritability of the two biomarkers (0.28), the size of our experimental setup was insufficient to detect significant genetic correlations between feed efficiency and the biomarkers. However, we validated the potential of plasma δ15N to phenotypically discriminate two animals reared in identical conditions in terms of feed efficiency as long as they differ by at least 0.049 g/g for FCE and 1.67 kg/d for RFI. Altogether, the study showed phenotypic, but non-genetic, relationships between plasma proteins δ15N and feed efficiency that varied according to the efficiency index and the diet utilised.  相似文献   

10.
The objective of this meta-analysis was to develop empirical equations predicting growth responses of growing cattle to protein intake. Overall, the data set comprised 199 diets in 80 studies. The diets were mainly based on grass silage or grass silage partly or completely replaced by whole-crop silages or straw. The concentrate feeds consisted of cereal grains, fibrous by-products and protein supplements. The analyses were conducted both comprehensively for all studies and also separately for studies in which soybean meal (SBM; n=71 diets/28 studies), fish meal (FM; 27/12) and rapeseed meal (RSM; 74/35) were used as a protein supplement. Increasing dietary CP concentration increased (P<0.01) BW gain (BWG), but the responses were quantitatively small (1.4 g per 1 g/kg dry matter (DM) increase in dietary CP concentration). The BWG responses were not different for bulls v. steers and heifers (1.4 v. 1.3 g per 1 g/kg DM increase in dietary CP concentration) and for dairy v. beef breeds (1.2 v. 1.7 g per 1 g/kg, respectively). The effect of increased CP concentration declined (P<0.01) with increasing mean BW of the animals and with improved BWG of the control animals (the lowest CP diet in each study). The BWG responses to protein supplementation were not related to the CP concentration in the control diet. The BWG responses increased (P<0.05) with increased ammonia N concentration in silage N and declined marginally (P>0.10) with increasing proportion of concentrate in the diet. All protein supplements had a significant effect on BWG, but the effects were greater for RSM (P<0.01) and FM (P<0.05) than for SBM. Increasing dietary CP concentration improved (P<0.01) feed efficiency when expressed as BWG/kg DM intake, but decreased markedly when expressed as BWG/kg CP intake. Assuming CP concentration of 170 g/kg BW marginal efficiency of the utilisation of incremental CP intake was only 0.05. Increasing dietary CP concentration had no effects on carcass weight, dressing proportion or conformation score, but it increased (P<0.01) fat score. Owing to limited production responses, higher prices of protein supplements compared with cereal grains and possible increases the N and P emissions, there is generally no benefit from using protein supplementation for growing cattle fed grass silage-based diets, provided that the supply of rumen-degradable protein is not limiting digestion in the rumen.  相似文献   

11.
Temperate pasture species constitute a source of protein for dairy cattle. On the other hand, from an environmental perspective, their high N content can increase N excretion and nitrogenous gas emissions by livestock. This work explores the effect of energy supplementation on N use efficiency (NUE) and nitrogenous gas emissions from the excreta of dairy cows grazing a pasture of oat and ryegrass. The study was divided into two experiments: an evaluation of NUE in grazing dairy cows, and an evaluation of N-NH3 and N-N2O volatilizations from dairy cow excreta. In the first experiment, 12 lactating Holstein × Jersey F1 cows were allocated to a double 3 × 3 Latin square (three experimental periods of 17 days each) and subjected to three treatments: cows without supplementation (WS), cows supplemented at 4.2 kg DM of corn silage (CS) per day, and cows supplemented at 3.6 kg DM of ground corn (GC) per day. In the second experiment, samples of excreta were collected from the cows distributed among the treatments. Aliquots of dung and urine of each treatment plus one blank (control – no excreta) were allotted to a randomized block design to evaluate N-NH3 and N-N2O volatilization. Measurements were performed until day 25 for N-NH3 and until day 94 for N-N2O. Dietary N content in the supplemented cows was reduced by 20% (P < 0.001) compared with WS cows, regardless of the supplement. Corn silage cows had lower N intake (P < 0.001) than WS and GC cows (366 v. 426 g/day, respectively). Ground corn supplementation allowed cows to partition more N towards milk protein compared with the average milk protein of WS cows or those supplemented with corn silage (117 v. 108 g/day, respectively; P < 0.01). Thus, even though they were in different forms, both supplements were able to increase (P < 0.01) NUE from 27% in WS cows to 32% in supplemented cows. Supplementation was also effective in reducing N excretion (761 v. 694 g/kg of Nintake; P < 0.001), N-NH3 emission (478 v. 374 g/kg of Nmilk; P < 0.01) and N-N2O emission (11 v. 8 g/kg of Nmilk; P < 0.001). Corn silage and ground corn can be strategically used as feed supplements to improve NUE, and they have the potential to mitigate N-NH3 and N-N2O emissions from the excreta of dairy cows grazing high-protein pastures.  相似文献   

12.
Using corn germ (CG) instead of corn grain could maintain dairy cow performance and might increase the efficiency of human food production. The primary objective of this study was to evaluate the effects of replacing corn grain with CG on the performance, nutrient intake, and digestibility of dairy cows. It also aimed to investigate the effect of CG on the efficiency of human food production in high-producing Holstein dairy cows in early lactation. Nine multiparous Holstein cows with 65.6 ± 8.5 DIM, milk yield of 55.6 ± 4.5 kg/d, and body weight of 611.3 ± 43.3 kg (mean ± SD) were used in a 3 × 3 Latin square design with 21-d periods. Treatments were (1) control treatment (CT, diet contains corn grain), (2) alternative treatment (AT, diet where corn grain was replaced with CG), and (3) balanced treatment (BT, diet where corn grain was replaced with CG but with the same energy content as CT). Control and balanced diets were isoenergetic (6.61 MJ/kg of DM); however, AT had higher energy (6.77 MJ/kg of DM). Treatments had no effect on dry and organic matter intake. NDF intake, however, was higher in CG diets compared with CT (P = 0.0001). Total-tract digestibility of DM tended to be reduced (P = 0.08), and OM digestibility was reduced (P = 0.05) by the inclusion of CG in diets. Whole and energy-corrected milk production were greater in AT compared with CT and BT (P < 0.05). Milk yield was similar in cows fed CT and BT. Treatments had no effect on milk composition or feed efficiency. Diet CT, when compared with CG diets, had lower efficiency in terms of human-edible feed conversion efficiency (HeFCE) and net food production (P < 0.05). Diet BT had greater HeFCE and net production of human-edible CP than AT (P < 0.05). Plasma BHBA, non-esterified fatty acids, and glucose concentrations were not affected by treatments, but plasma cholesterol was higher in cows that consumed CG diets (P = 0.04). The results indicate that, in high-producing early lactation dairy cows fed high concentrate diets, net food protein production can be substantially improved without lowering milk production through the reduction of dietary starch from 30.2 to 24.8% by replacing corn grain with CG.  相似文献   

13.
The digestive system of the weaned piglets can be affected by the type of ingredients present in the diet, and a high fibre content in diets can limit the use of other nutrients and energy. The study was conducted to determine the effects of multicarbohydrase (MC) and phytase (Phy) supplementation on the nutritive value of wheat bran (WB) in weaned piglets. Multicarbohydrase preparation had 700 U α-galactosidase, 2200 U galactomannanase, 3000 U xylanase and 22 000 U β-glucanase per kilogram of diet, and Phy had 500 phytase units – FTU/kg of diet. Twenty-five weaned piglets (6.1 ± 0.63 kg) at 21 days old were fed five diets in a completely randomised experimental design with a 2 × 2 + 1 (0 and 200 mg/kg MC; 0 and 50 mg/kg Phy; and basal diet – BD) factorial arrangement used to determine treatment effects. An additional group of piglets was fed a corn-basal diet during apparent digestibility of nutrients, and fed a 5% casein-corn starch basal diet during apparent and standardised ileal digestibility (SID) of amino acid evaluations. Piglets were individually caged until 38 days old, when Ileal digesta was collected at slaughter. Test diets were made by mixing the basal diets and WB 7 : 3 (w/w), with or without MC, Phy or the combination. There was an interaction trend (P = 0.07) between MC and Phy in the balance of ash, digestible energy (DE) and metabolisable energy (ME). Effects of MC (P < 0.01) on DM, N retention, DE and ME, as well as an effect of Phy (P < 0.05) on ash, DE and ME and a trend in protein digestibility (P = 0.07) also was observed. The enzyme combination showed effect (P < 0.05) on SID of Lys, Pro and Ser; as a trend (P < 0.07) on His, Thr and Val. Isolated, MC also suggested improving (P < 0.07) on SID of His, Lys, Ala (P < 0.05), while Phy improved (P < 0.06) SID of Leu, Lys, Met (P < 0.01), Thr, Val, Ala (P < 0.01), Pro and Ser (P < 0.05). The MC carbohydrate complex was characterised as a viable alternative to increase the apparent nutrients digestibility and SID of amino acids when WB was used in the diet of young pigs and, when combined with Phy, suggested an additive effect on the apparent use of energy.  相似文献   

14.
Diets combining herbage and total mixed rations (TMR) are increasingly used in temperate regions for feeding ruminants, but little information is available regarding the effects on nutrient intake and digestion of this feeding management in beef cattle. The aim of this study was to determine the effects of combining TMR (10% CP and 13% ADF), and legume-based herbage (14% CP and 27% ADF) on intake, nutrient digestion, ruminal fermentation, microbial N flow and glucose and nitrogen metabolism in heifers. The experiment was a 3×3 Latin square design replicated three times; each period lasted 18 days (10 adaptation days and 8 measurement days). Nine cross-bred (Aberdeen Angus×Hereford) heifers (214±18 kg) fitted with permanent rumen catheters and housed in individual metabolic cages were assigned to one of three treatments: 24 h access to TMR (T), 24 h access to herbage (H) or combined diets with 18 h access to TMR and 6 h access to herbage (T+H). Data were evaluated using a mixed model. Animals fed T+H (TMR 71% and herbage 29%) diets tended to have a higher dry matter intake as a proportion of their BW than animals fed T. The T+H diet did not change ruminal fermentation (pH, N–NH3 and volatile fatty acids) or the N metabolism relative to the T diet, but increased the glucagon concentration and altered glucose metabolism. Conversely, animals fed T+H had increased purine derivatives excretion, increased N use efficiency for microbial protein synthesis and decreased plasma urea and urinary N excretion relative to animals fed H diet. The use of combined diets led to consumption of nutrients similar to a TMR diet, without reducing nutrient use and could improve N utilization compared with the herbage-only diet.  相似文献   

15.
Oxidative stress occurs when oxidant production exceeds the antioxidant capacity to detoxify the reactive intermediates or to repair the resulting damage. Feed efficiency has been associated with mitochondrial function due to its impact on cell energy metabolism. However, mitochondria are also recognized as a major source of oxidants. The aim of this study was to determine lipid and protein oxidative stress markers, and gene and protein expression as well as activity of antioxidant enzymes in the liver of steers of divergent residual feed intake (RFI) phenotypes. Hereford steers (n = 111) were evaluated in post-weaning 70 days standard test for RFI. Eighteen steers exhibiting the greatest (n = 9; high-RFI) and the lowest (n = 9; low-RFI) RFI values were selected for this study. After the test, steers were managed together under grazing conditions until slaughter when they reached the slaughter body weight. At slaughter, hepatic samples were obtained, were snap-frozen in liquid nitrogen and stored at −80°C until analyses. Hepatic thiobarbituric acid reactive species and protein carbonyls were greater (P = 0.05) and hepatic 4-hydroxynonenal protein adducts tended (P = 0.10) to be greater for high- than low-RFI steers. Hepatic gene expression glutathione peroxidase 4, glutamate–cysteine ligase catalytic subunit and peroxiredoxin 5 mRNA was greater (P ≤ 0.05) and glutathione peroxidase 3 mRNA tended (P = 0.10) to be greater in low- than high-RFI steers. Hepatic protein expression and enzyme activity of manganese superoxide dismutase and glutathione peroxidase enzyme activity tended (P ≤ 0.10) to be greater for low- than high-RFI steers. High-efficiency steers (low-RFI) probably had better hepatic oxidative status which was strongly associated with greater antioxidant ability near to the oxidant production site and, therefore, reduced oxidative stress of the liver. Decreased hepatic oxidative stress would reduce maintenance requirements due to a lower protein and lipid turnover and better efficiency in the use of energy.  相似文献   

16.
Animal proteins are naturally 15N enriched relative to the diet and the extent of this difference (Δ15Nanimal-diet or N isotopic fractionation) has been correlated to N use efficiency (NUE; N gain or milk N yield/N intake) in some recent ruminant studies. The present study used meta-analysis to investigate whether Δ15Nanimal-diet can be used as a predictor of NUE across a range of dietary conditions, particularly at the level of between-animal variation. An additional objective was to identify variables related to N partitioning explaining the link between NUE and Δ15Nanimal-diet. Individual values from eight publications reporting both NUE and Δ15Nanimal-diet for domestic ruminants were used to create a database comprising 11 experimental studies, 41 treatments and individual animal values for NUE (n=226) and Δ15Nanimal-diet (n=291). Data were analyzed by mixed-effect regression analysis taking into account experimental factors as random effects on both the intercept and slope of the model. Diets were characterized according to the INRA feeding system in terms of N utilization at the rumen, digestive and metabolic levels. These variables were used in a partial least squares regression analysis to predict separately NUE and Δ15Nanimal-diet variation, with the objective of identifying common variables linking NUE and Δ15Nanimal-diet. For individuals reared under similar conditions (within-study) and at the same time (within-period), the variance of NUE and Δ15Nanimal-diet not explained by dietary treatments (i.e. between-animal variation plus experimental error) was 35% and 55%, respectively. Mixed-effect regression analysis conducted with treatment means showed that Δ15Nanimal-diet was significantly and negatively correlated to NUE variation across diets (NUE=0.415 −0.055×Δ15Nanimal-diet). When using individual values and taking into account the random effects of study, period and diet, the relationship was also significant (NUE=0.358 −0.035×Δ15Nanimal-diet). However, there may be a biased prediction for animals close to zero, or in negative, N balance. When using a novel statistical approach, attempting to regress between-animal variation in NUE on between-animal variation in Δ15Nanimal-diet (without the influence of experimental factors), the negative relationship was still significant, highlighting the ability of Δ15Nanimal-diet to capture individual variability. Among the studied variables related to N utilization, those concerning N efficiency use at the metabolic level contributed most to predict both Δ15Nanimal-diet and NUE variation, with rumen fermentation and digestion contributing to a lesser extent. This study confirmed that on average Δ15Nanimal-diet can predict NUE variation across diets and across individuals reared under similar conditions.  相似文献   

17.
With the high cost of feed for animal production, genetic selection for animals that metabolize feed more efficiently could result in substantial cost savings for cattle producers. The purpose of this study was to identify DNA markers predictive for differences among cattle for traits associated with feed efficiency. Crossbred steers were fed a high‐corn diet for 140 days and average daily feed intake (ADFI), average daily gain (ADG), and residual feed intake (RFI) phenotypes were obtained. A region on chromosome 14 was previously associated with RFI in this population of animals. To develop markers with the highest utility for predicting an animal's genetic potential for RFI, we genotyped additional markers within this chromosomal region. These polymorphisms were genotyped on the same animals (n = 1066) and tested for association with ADFI, ADG and RFI. Six markers within this region were associated with RFI ( 0.05). After conservative correction for multiple testing, one marker at 25.09 Mb remained significant (= 0.02) and is responsible for 3.6% of the RFI phenotypic variation in this population of animals. Several of these markers were also significant for ADG, although none were significant after correction. Marker alleles with positive effects on ADG corresponded to lower RFI, suggesting an effect increasing growth without increasing feed intake. All markers were also assessed for their effects on meat quality and carcass traits. All of the markers associated with RFI were associated with adjusted fat thickness (AFT, 0.009) and three were also associated with hot carcass weight (HCW, 0.003). Marker alleles associated with lower RFI were also associated with reduced AFT, and if they were associated for HCW, the effect was an increase in weight. These markers may be useful as prediction tools for animals that utilize feed more efficiently; however, validation with additional populations of cattle is required.  相似文献   

18.
Some grain processing by-products rich in digestible fiber are good feed resources for ruminants. This experiment was conducted to investigate the effects of replacing a portion of corn and corn stover with the combinations of corn bran and soybean hulls in the diet of fattening lambs on nutrient digestion, rumen microbial protein synthesis, and growth performance. A total of 36 Dorper × Small Thin-Tailed crossbred ram lambs (BW = 22.2 ± 0.92 kg; mean ± SD) were randomly divided into three groups, and each group was fed 1 of 3 treatment diets: 1) 0% corn bran and soybean hulls (control); 2) 9% corn bran and 9% soybean hulls (18MIX); and 3) 17% corn bran and 17% soybean hulls (34MIX). The feeding experiment was conducted for 70 days, with the first 10 days for adaption. The DM intake was higher for 34MIX (1635.3 g/d) than for control diet (1434.7 g/d; P = 0.001). Lambs fed 18MIX and 34MIX diets (230.2 and 263.6 g/d, respectively) had higher average daily gain and feed efficiency than those fed control diet (194.8 g/d; P < 0.01). Dry matter and NDF digestibility for 34MIX group (60.9 and 49.5%) were higher than for control (55.2 and 41.3%; P < 0.01). No difference was observed in nitrogen digestibility among treatment diets (P = 0.778). The lambs fed 34MIX diet excreted more urinary purine derivatives, indicating that more microbial protein was yielded than those fed control diet (P < 0.01), while 18MIX was not different from the other two diets (P > 0.05). The metabolizable protein supplies were improved with increasing co-products inclusion rate. The results indicated that corn bran and soybean hulls in combination can effectively replace a portion of corn and corn stover in the ration of finishing lambs with positive effect on nutrient digestion and growth performance.  相似文献   

19.
Dietary protein adjustments can reduce environmental impact and economic losses in production systems. However, we lack information regarding nitrogen (N) metabolism and protein requirements for maintenance of crossbred animals such as Red Norte breed, precluding a precise dietary management. The objective was to evaluate the effect of increasing dietary CP levels (9%, 11%, 13%, 15% and 17%) on intake, digestibility and N balance, as well as to estimate the metabolizable protein requirements for maintenance (MPm) of growing Red Norte bulls. Thirty five animals averaging 280 ± 4.0 kg BW were fed during 45 days in a 60 : 40 forage : concentrate ratio diet in which the last 5 days were used for the digestibility trial. Intakes of CP and non-fibrous carbohydrates (NFCs) and feed efficiency linearly increased (P < 0.05) as CP levels increased, while DM, NDF, nitrogen efficiency use and ether extract were not influenced by CP levels (P > 0.05). Digestibilities of DM, organic matter, ether extract, NFC and CP as well as metabolizable energy intake linearly increased (P < 0.05), and true digestibility of CP was not affected (P > 0.05) by treatments. Urinary N and retained N linearly increased (P < 0.05) with the increase in dietary N. The MPm were estimated as 4.46 g/BW0.75 and the efficiency of use of MPm was 0.673. In conclusion, obtained MPm requirements of growing Red Norte bulls are greater than the values reported in literature for Zebu cattle and dietary CP levels of 15% and 17% exhibited great responses for growing Red Norte cattle. However, a cost-benefit evaluation should be done before its use.  相似文献   

20.
Wet corn gluten feed (WCGF) is a high moisture feed containing rapidly digestible, non-forage fiber and protein. The objective of this study was to investigate the effect of substituting WCGF and corn stover for alfalfa hay in total mixed ration (TMR) silage on lactation performance and nitrogen balance in dairy cows. Nine multiparous Holstein dairy cows (BW = 532 ± 28.9 kg and day in milk = 136 ± 5.6 d; mean ± SD) were used in a replicated 3 × 3 Latin square design with 21-d periods (14 d of diet adaption and 7 d of sample collection). Groups were balanced for parity, day in milk, and milk production and consumed one of three treatment diets during each period. The treatment diets were fed as TMR and contained similar concentrate mixtures and corn silage but different proportions of roughage and WCGF. The three treatments were: (1) 0% WCGF, 0% corn stover, and 22.1% alfalfa hay (0% WCGF); (2) 6.9% WCGF, 3.4% corn stover, and 11.8% alfalfa hay (7% WCGF); and (3) 13.3% WCGF, 4.9% corn stover, and 3.9% alfalfa hay (13.3% WCGF). Compared to the 0% WCGF diet, the cows fed the 7% and 13.3% WCGF diets had a higher milk yield and concentration of milk fat, protein, lactose, and total solids. Effective degradability of DM was higher in the cows fed the 7% and 13.3% WCGF diets than it was with the 0% WCGF diet. Cows fed the 13.3% WCGF had a higher CP effective degradability and a lower rumen undegraded protein than cows fed the 0% WCGF diet. The concentration of ruminal volatile fatty acids and ammonia-N was higher in cows fed the 7% and 13.3% WCGF diets than cows fed the 0% WCGF diet. The fecal N was lower in cows fed the 7% and 13.3% WCGF diets than it was in cows fed the 0% WCGF diet. Milk N secretion and milk N as a percent of N intake were higher in cows fed the 13.3% WCGF diet than cows fed the 0% and 7% WCGF diets. In conclusion, it appears that feeding a TMR silage containing WCGF and corn stover in combination, replacing a portion of alfalfa hay, may improve lactation performance and nitrogen utilization for lactating dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号