首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of Miniopterus bat species on Madagascar and the nearby Comoros islands (Malagasy region) has risen from four to 11. These recently described cryptic taxa have been differentiated primarily based on molecular markers and associated a posteriori morphological characters that corroborate the different clades. Members of this Old World genus are notably conservative in morphology across their range. Several sites on Madagascar hold up to four small‐bodied taxa of this genus that are morphologically similar to one another, although they can be distinguished based on the tragus, an ear structure associated with echolocation. Miniopterus often emit species‐specific calls. In the present study, we analyze the bioacoustics of the 11 species of Miniopterus currently recognized from the Malagasy region, with an initial identification of the 87 recorded and collected individuals based on molecular markers and certain morphological characters. In most cases, bioacoustic parameters differentiate species and have taxonomic utility. Miniopterus griveaudi populations, which occur on three islands (Madagascar, Anjouan, and Grande Comore), showed no significant differences in peak echolocation frequencies. After running a discriminant function analysis based on five bioacoustic parameters, some mismatched assignments of Malagasy species were found, which include allopatric sister‐taxa and sympatric, phylogenetically not closely‐related species of similar body size. Because the peak echolocation frequencies of two species (Miniopterus sororculus and Miniopterus aelleni) were independent of body size, they were acoustically distinguishable from cryptic sympatric congeners. The small variation around the allometric relationship between body size and peak echolocation frequency of Malagasy Miniopterus species suggests that intraspecific communication rather than competition or prey detection may be the driver for the acoustic divergence of these two species. Our well‐defined echolocation data allow detailed ecological work to commence aiming to test predictions about the relative roles of competition, prey availability, and social communication on the evolution of echolocation in Malagasy Miniopterus species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 284–302.  相似文献   

2.
Over the past decade, major advances have been made concerning the systematics and species diversity of Malagasy bats, largely based on specimens collected during inventories and associated morphological and molecular genetic studies. Herein we describe a new species of endemic bat from southern Madagascar, Miniopterus griffithsi sp. n . , which is the sister taxa to Miniopterus gleni , a taxon described in 1995 (holotype from Sarodrano, just north of the Onilahy River in the southwest). Based on current information, M. griffithsi is found in the sub-arid bioclimatic zone, south of the Onilahy River, and M. gleni occurs in a variety of different bioclimatic zones, north of the Onilahy River to the northern portion of the island and on the near shore island of Ile Sainte Marie. The realization that M. griffithsi was a separate entity was first based on phylogeographic studies of the M. gleni complex. Comparisons using 397 bp of mitochondrial cytochrome b found a divergence of 1.2% within animals occurring across much of Madagascar north of the Onilahy River, 0.07% in those south of the Onilahy River, and 7.4% in populations separated by this river. Subsequently, morphological characters were identified that supported the specific separation of populations occurring south ( M. griffithsi ) and north of the Onilahy River ( M. gleni ), which include tragus shape, pelage coloration, and skull proportions.  相似文献   

3.
Panicum L. is a cosmopolitan genus with approximately 450 species. Although the genus has been considerably reduced in species number with the segregation of many taxa to independent genera in the last two centuries, Panicum remains a heterogeneous assemblage, as has been demonstrated in recent years. The genus is remarkably uniform in its floral characters but exhibits considerable variation in anatomical, physiological, and cytological features. As a result, several classifications, and criteria of what the genus should really include, have been postulated in modern literature. The purpose of this research, based on molecular data of the chloroplast ndhF gene, is to test the monophyly of Panicum, to evaluate infrageneric classifications, and to propose a robust phylogenetic hypothesis. Based on the present results, previous morphological and molecular phylogenetic studies, and inferred diagnostic morphological characters, we restrict Panicum sensu stricto (s.s.) to the former subgenus Panicum and support recognition of Dichanthelium, Phanopyrum, and Steinchisma as distinct genera. We have transfered other species of Panicum to other genera of the Paniceae. Most of the necessary combinations have been made previously, so few nomenclatural changes have been required. The remaining species of Panicum sensu lato (s.l.) are included within Panicum incertae sedis representing isolated species or species grouped within monophyletic clades. Additionally, we explore the performance of the three codon position characters in producing the supported phylogeny.  相似文献   

4.
Abstract: The infrafamilial relationships of Podostemaceae were deduced from nucleotide sequences of the chloroplast matK gene. The matK phylogenetic analyses show that Podostemaceae are composed of two major clades that correspond to the subfamily Tristichoideae sensu stricto and Weddellina and the subfamily Podostemoideae. Weddellina, which has long been recognized as a member of the Tristichoideae, is sister to the Podostemoideae, supporting the classification that recognized a third subfamily Weddellinoideae. Malaccotristicha malayana and Terniopsis sessilis form a basal clade in Tristichoideae sensu stricto. Tristichoideae show a high morphological diversity and, surprisingly, a close relationship exists between Dalzellia zeylanica and Indotristicha ramosissima, which remarkably differ in their body plans. A few genera defined by particular characters, such as Synstylis and Torrenticola, merge into clades of other larger genera. The Podostemoideae taxa studied are composed of two American clades, an Asian-Australian clade and a Madagascan clade, and may suggest that the subfamily perhaps originated in America and migrated to the Old World.  相似文献   

5.
Eocene ocean currents and prevailing winds correlate with over-water dispersals of terrestrial mammals from Africa to Madagascar. Since the Early Miocene (about 23 Ma), these currents flowed in the reverse direction, from the Indian Ocean towards Africa. The Comoro Islands are equidistant between Africa and Madagascar and support an endemic land vertebrate fauna that shares recent ancestry predominantly with Madagascar. We examined whether gene flow in two Miniopterus bat species endemic to the Comoros and Madagascar correlates with the direction of current winds, using uni- and bi-parentally inherited markers with different evolutionary rates. Coalescence-based analyses of mitochondrial matrilines support a Pleistocene (approximately 180,000 years ago) colonization event from Madagascar west to the Comoros (distance: 300 km) in the predicted direction. However, nuclear microsatellites show that more recent gene flow is restricted to a few individuals flying against the wind, from Grande Comore to Anjouan (distance: 80 km).  相似文献   

6.
Oliver JC  Shapiro AM 《Molecular ecology》2007,16(20):4308-4320
Species exist as biological entities with patterns of discontinuous phenotypic variation. However, the distinctness of taxa is called into question when morphological intermediates exist in areas of sympatry, reflecting either gene flow among variants of a species or hybridization between different species. Studying the partitioning of genetic variation provides a means to discern between the two possibilities. We used genetic and morphometric approaches to investigate the degree of isolation among the three members of the Lycaena xanthoides species group. Lycaena xanthoides, L. editha, and L. dione are predominantly allopatric and have been treated both as three separate species and as a single polytypic species. Using 618 bp of the mitochondrial gene COII, we found little phylogenetic resolution, but significant among-taxa genetic variance partitioning. Divergence among these taxa has been relatively recent, as evidenced by relatively low pairwise sequence divergence. Also, the existence of two well-supported clades within L. xanthoides sensu stricto, concordant with the Transverse Ranges of southern California, indicates divergence within this taxon, and a possible cryptic species. Significant morphological differentiation between L. editha and L. xanthoides supports the hypothesis that these taxa represent separate gene pools. Populations occurring in a narrow zone where the two species' ranges approach are characterized by intermediate morphology, suggesting incomplete morphological divergence or recent hybridization. These findings highlight the utility of genetic data in inferring species boundaries and the identification of cryptic lineages.  相似文献   

7.
Nagy, Z. T., Glaw, F. & Vences, M. (2010) Systematics of the snake genera Stenophis and Lycodryas from Madagascar and the Comoros. —Zoologica Scripta, 39, 426–435. Arboreal snakes belonging to the pseudoxyrhophiine genus Stenophis inhabit Madagascar but despite their spectacular appearance, surprisingly little is known about their natural history and systematics. Nonetheless, a close phylogenetic affinity of the genera Stenophis and Lycodryas (the latter genus currently includes a single species from the Comoros) has been hypothesized. Based on recent molecular genetic data, however, the monophyly of Stenophis was challenged. This study aimed at a systematic analysis and taxonomic revision of the genera Stenophis and Lycodryas. On the basis of new molecular genetic and morphological data and analyses, we propose to accommodate these snakes in three monophyletic genera: Lycodryas, Phisalixella and Parastenophis, and to consider Stenophis as a junior synonym of Lycodryas. In the new generic arrangement, the genera can also be well distinguished by morphological characters. On the specific level, Phisalixella tulearensis is resurrected and indications of further, undescribed taxa are revealed.  相似文献   

8.
The endemic fauna of the Comoro Archipelago is composed of a mixture of taxa originating from Africa and Madagascar. Bats are the only native land dwelling mammals on this archipelago, but the biogeographical origins for the vast majority of species within this group are ambiguous. We report here genetic analyses based on two mitochondrial DNA markers to infer the origin of Comorian bats belonging to a reputed species complex of Miniopterus that is further distributed across Africa and Madagascar. Phylogenetic reconstructions show that east African M. minor are not closely related to the insular Miniopterus of Madagascar and the Comoros (Grande Comore and Anjouan). The latter cluster into two distinct, monophyletic clades (Clade 1 and Clade 2). Representatives of these clades occur sympatrically both on the Comoros and on Madagascar, and are distinguished by a large genetic distance (K2P: 9.9% for cytochrome b). No haplotypes are shared between any islands, suggesting the absence of contemporary gene flow. Populations of the widespread Clade 1 are furthermore characterized by a significant inter‐island structure (ΦCT = 0.249), and by high haplotype and nucleotide diversities (h = 0.90–0.98, π = 0.04–0.06). Demographic analyses of Clade 1 suggest secondary contact between two distinct phylogroups (Subclade 1 A and 1B) that reached Grande Comore and Anjouan, and a large, stable population with a long evolutionary history on Madagascar. These results and the current distribution of related lineages suggest that the Comoros were colonized independently at least two or three times by ancestors from Madagascar.  相似文献   

9.
Elucidative studies on the generic concept of Senecio (Asteraceae)   总被引:1,自引:0,他引:1  
VINCENT, P. L. D. & GETLIFFE, F. M., 1992. Elucidative studies on the generic concept of Senecio (Asteraceae) . This paper presents the results of studies of the generic concept of Senecio sensu stricto. The sample of taxa studied consisted of 93 Natal senecios (including seven varieties and two forms), five Cape heterochromous senecios and nine non-southern African senecios, including the type of the genus, S. vulgaris L. Also included in the study were six species from taxonomically closely related genera in the tribe Senecioneae and one Senecio of uncertain taxonomic position. The phenotype of these taxa was investigated with respect to a large number (122) of morphological and micromorphological characters. Six characters were selected as being taxonomically important with respect to elucidating the generic concept of Senecio sensu stricto. The generic concept of Senecio has been provisionally re-circumscribed and the generic status of each of the senecios and non-senecios studied has been tested according to this concept of Senecio sensu stricto sensu Vincent. In the light of this concept of Senecio , the following species are recommended for exclusion from Senecio sensu stricto sensu Vincent: S. cissampelinus, S. transvaalensis, S. syringifolius and S. hockii. The following species are considered to be peripheral to Senecio sensu stricto sensu Vincent: S. tanacetopsis, S. seminiveus, S. medley-woodii, S. tamoides, S. helminthioides, S. barbertonicus, S. brevilorus, S. viminalis, S. radicans and S.fulgens. Before any taxonomic changes are made to the current composition of Senecio , the concept of Senecio sensu stricto sensu Vincent, is being tested on a worldwide sample of the genus.  相似文献   

10.
Okajima Y  Kumazawa Y 《Gene》2009,441(1-2):28-35
Complete or nearly complete nucleotide sequences of mitochondrial genomes (mtDNAs) were determined from eight species which, together with previous mtDNA data for two other taxa, cover most subfamilies of Iguanidae sensu lato. These iguanid mtDNAs were found to be rather conservative with respect to gene arrangements and molecular evolutionary rates, which contrasts with mtDNAs of Acrodonta (Agamidae and Chamaeleonidae) in which several gene rearrangements and highly accelerated molecular evolutionary rates have been known. Phylogenetic analyses consistently suggested the earliest shoot-off of a Malagasy subfamily Oplurinae and an affinity of Polychrotinae and Tropidurinae sensu stricto. However, even with the ample molecular characters derived from complete mtDNA sequences, phylogenetic relationships between iguanid subfamilies were poorly resolved in general, presumably due to the rapid ancient cladogenesis. Divergence time estimation without assuming the molecular clock suggested the Late Triassic/Early Jurassic divergence of Iguanidae from acrodonts and the Middle/Late Jurassic divergence of Oplurinae from the other iguanids. Together with geological and paleontological evidence, these results led us to propose Gondwanan vicariance for the origin of Malagasy oplurines without invoking a land bridge connection between South America/Antarctica and drifting Madagascar/India.  相似文献   

11.
The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions.  相似文献   

12.
Cuticular hydrocarbons (CHCs) are valuable characters for the analysis of cryptic insect species with few discernible morphological characters. Yet, their use in insect systematics, specifically in subterranean termites in the genus Reticulitermes (Isoptera: Rhinotermitidae), remains controversial. In this paper, we show that taxonomic designations in Reticulitermes from California (USA) suggested in light of differences among CHC phenotypes are corroborated by phylogenetic analyses using mtDNA sequences. Analyses based on CHC phenotypes and supported, in part, by behavioral and ecological differences have suggested the presence of more species than the two currently recognized: R. hesperus Banks and R. tibialis Banks. We analyze a 680 base pair fragment of the mitochondrial DNA cytochrome oxidase (COII) gene from 45 new (21 collection localities) and two previously recorded samples of Reticulitermes from California using parsimony and maximum likelihood methods. Both methods result in trees with highly similar topologies. Bootstrapping indicates support for six clades of Reticulitermes, and corroborates groupings based on cuticular hydrocarbons. One of the clades, R. hesperus, is already recognized in California, while four clades appear to be previously undescribed taxa. Although identification of the final clade is inconclusive, it includes a sample putatively identified as R. tibialis. Therefore, using phylogenetic analyses we corroborate chemical characters used to identify taxa, associate a chemical phenotype with a previously described species, and provide additional support for undescribed taxa of Reticulitermes.  相似文献   

13.
Sequence data from the intron and spacer of the trnL-F chloroplast region elucidate the phylogenetic relationships of the tribe Diseae (Orchidoideae: Orchidaceae). Within Diseae, 41 species of Disa, two of Brownleea, three of Satyrium, and two of Corycium were included, with five species of Habenaria sensu lato (Orchideae) and one epidendroid as outgroups. The sequences revealed substitutions and considerable length variation, due mainly to the presence of repeat motifs. Phylogenetic analysis using parsimony revealed five distinct clades. The branching order of the five weakly supported the paraphyly of Diseae, with the successive divergence of Brownleea, Corycium, Habenaria, Satyrium, and Disa. Within the monophyletic Disa, three main groupings appeared, two strongly supported clades representing sect. Racemosae and sect. Coryphaea and the third grouping containing several clades currently grouped into sections based on morphological phylogenies. Some discrepancies between the molecular phylogeny and the phylogeny based on morphological characters may require reevaluation of some of the morphological characters. The presence of different numbers of repeat motifs, both among different taxa and within taxa, indicates that these characters may be phylogenetically informative at the population level.  相似文献   

14.
Species in cryptic complexes are, per definition, difficult to identify using morphological characters. One such complex was recently detected in the dung beetle Aphodius fimetarius (Linnaeus) sensu lato, an abundant dung beetle with a wide distribution. While the two component taxa, Aphodius fimetarius sensu stricto and Aphodius pedellus (De Geer) exhibit distinctly different karyotypes, the validity of subtle morphological characters proposed to distinguish between them has been debated. Given the variability and minor interspecific differences in external characters, the large‐scale distribution of respective taxa has remained unknown, as have potential differences in ecology and habits. In this study, we ask how A. fimetarius and A. pedellus can best be distinguished, whether the use of different types of characters (karyotypes, DNA sequences and morphological traits) results in consistent species identification, where these species occur and whether they exhibit ecological differences. In total, we inspected a material of 4401 individuals from across the globe, of which 183 were examined for both mtDNA sequences and morphology, 154 for both morphology and karyotype, and 9 (including the recently proposed neotype of Aphodius fimetarius) for all three types of characters. As a marker gene, we sequenced a 590 bp region of the cytochrome c oxidase I gene for 183 individuals. Overall, DNA sequences offered a clear‐cut distinction between taxa: sequences of A. fimetarius and A. pedellus differed by an average pairwise distance of 8.2%, whereas variation within species was only 0.9% for A. fimetarius and 0.5% for A. pedellus. Morphological and chromosomal characters offered species identifications consistent with that of molecular characters: karyotypes identified as A. pedellus consistently fell within one of the molecular clades, whereas karyotypes identified as A. fimetarius fell within the other clade. Likewise, the majority of individuals identified by morphological characters were assigned to the same species by sequence‐based characters. Both taxa thus defined were found to be Holarctic in distribution, with major sympatry within Central and Southern Europe and mixed patterns of sympatry within the US. Northern areas of Europe, Asia and North America are dominated by A. pedellus alone. Within A. pedellus, patterns of sequence diversity were indicative of a recent population expansion. In the western US, the phenology of a population of A. fimetarius was observed to significantly differ from that of a sympatric population of A. pedellus, thereby revealing an ecological difference between the two cryptic taxa. Overall, we conclude that all types of characters offered a consistent classification of the two species. Thus, the laborious karyotyping techniques used to originally establish the presence of two cryptic taxa can now be substituted by characters more easily applied to large ecological samples. Using this approach of integrative taxonomy, we were able to establish the global distribution and species‐specific ecology of these ecologically important cryptic taxa. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:4033473E-8BF7-40F4-852D-916E4F858593 .  相似文献   

15.
We constructed a phylogenetic hypothesis for western Indian Ocean sunbirds (Nectarinia) and used this to investigate the geographic pattern of their diversification among the islands of the Indian Ocean. A total of 1309 bp of mitochondrial sequence data was collected from the island sunbird taxa of the western Indian Ocean region, combined with sequence data from a selection of continental (African and Asian) sunbirds. Topological and branch length information combined with estimated divergence times are used to present hypotheses for the direction and sequence of colonization events in relation to the geological history of the Indian Ocean region. Indian Ocean sunbirds fall into two well-supported clades, consistent with two independent colonizations from Africa within the last 3.9 million years. The first clade contains island populations representing the species Nectarinia notata, while the second includes Nectarinia souimanga, Nectarinia humbloti, Nectarinia dussumieri, and Nectarinia coquereli. With respect to the latter clade, application of Bremer's [Syst. Biol. 41 (1992) 436] ancestral areas method permits us to posit the Comoros archipelago as the point of initial colonization in the Indian Ocean. The subsequent expansion of the souimanga clade across its Indian Ocean range occurred rapidly, with descendants of this early expansion remaining on the Comoros and granitic Seychelles. The data suggest that a more recent expansion from Anjouan in the Comoros group led to the colonization of Madagascar by sunbirds representing the souimanga clade. In concordance with the very young geological age of the Aldabra group, the sunbirds of this archipelago have diverged little from the Madagascar population; this is attributed to colonization of the Aldabra archipelago in recent times, in one or possibly two or more waves originating from Madagascar. The overall pattern of sunbird radiation across Indian Ocean islands indicates that these birds disperse across ocean barriers with relative ease, but that their subsequent evolutionary success probably depends on a variety of factors including prior island occupation by competing species.  相似文献   

16.
No Phlebotomine sandflies had ever been reported in the Comoros Archipelago, including the three islands of the Republic of the Union of Comoros (Grande Comore, Mohéli and Anjouan) and the French oversea department of Mayotte. During three field surveys carried out in 2003, 2007 and 2011, we provided the first record of Phlebotomine sandflies in this area. A total of 85 specimens belonging to three species were caught: a new species S. (Vattieromyia) pessoni n. sp. (two females from Grande Comore), a new subspecies of Sergentomyia (Rondanomyia) goodmani (80 specimens from Grande Comore and one from Anjouan) and Grassomyia sp. (two females from Mohéli). The individualisation of these taxa was inferred both from morphological criteria and sequencing of a part of the cytochrome b of the mitochondrial DNA. These taxa are closely related to Malagasy sandflies.  相似文献   

17.
Species delimitation in Hymenochaete sensu lato was evaluated based on partial nucLSU rDNA sequences, isoenzyme analyses and morphological data. Analyses of LSU data revealed Hymenochaete sensu stricto and Pseudochaete as distinct monophyletic genera. Transfer of Hydnochaete olivacea into genus Pseudochaete and Dichochaete setosa into genus Hymenochaete (as H. resupinata) was supported by the results of molecular analyses. A new species Hymenochaete koeljalgii from Tanzania was described. The species of genus Hymenochaete sensu stricto were divided into four well-supported clades possessing no distinctive morphological characters.  相似文献   

18.
19.
Fusarium isolates that form part of the Gibberella fujikuroi species complex have been classified using either a morphological, biological, or phylogenetic species concept. Problems with the taxonomy of Fusarium species in this complex are mostly experienced when the morphological and biological species concepts are applied. The most consistent identifications are obtained with the phylogenetic species concept. Results from recent studies have presented an example of discordance between the biological and phylogenetic species concepts, where a group of F. subglutinans sensu stricto isolates, i.e., isolates belonging to mating population E of the G. fujikuroi complex, could be sub-divided into more than one phylogenetic lineage. The aim of this study was to determine whether this sub-division represented species divergence or intraspecific diversity in F. subglutinans. For this purpose, we included 29 F. subglutinans isolates belonging to the E-mating population that were collected from either maize or teosinte, from a wide geographic range. DNA sequence data for six nuclear regions in each of these isolates were obtained and used in phylogenetic concordance analyses. These analyses revealed the presence of two major groups representing cryptic species in F. subglutinans. These cryptic species were further sub-divided into a number of smaller groups that appear to be reproductively isolated in nature. This suggests not only that the existing F. subglutinans populations are in the process of divergence, but also that each of the resulting lineages are undergoing separation into distinct taxa. These divergences did not appear to be linked to geographic origin, host, or phenotypic characters such as morphology.  相似文献   

20.
This study presented the first molecular phylogenetic analysis of the major clades of woody bamboos of the Old World tropics based on nuclear and chloroplast sequences (ITS, GBSSI and trnL-F). Sequence data from 53 species, representing 17 paleotropical woody bamboo genera, were analyzed using the maximum parsimony and Bayesian inference methods. All examined ingroup taxa were clustered into two clades, i.e., the Bambusinae+Dinochloa clade and the Melocanninae clade. The former clade included Bambusa, Bonia, Dendrocalamus, Dendrocalamopsis, Dinochloa, Gigantochloa, Molecalamus, Neomicrocalamus, Neosinocalamus, Oxytenanthera s. str. (sensu stricto), Racemobambos and Thyrsostachys. The Melocanninae clade consisted of Cephalostachyum, Leptocanna (better treated as part of Cephalostachyum), Melocanna, Pseudostachyum and Schizostachyum s. str. The subtribe Racemobambosinae and tribes Dendrocalameae and Oxytenanthereae were not supported and may be better placed in subtribe Bambusinae. The ovary characters seemed to be good criteria to distinguish these two clades. The reconstruction of ancestral fruit characters indicated that the bacoid caryopsis, namely, fleshy or berry-like fruits, was found to be scattered in three lineages of the examined paleotropical woody bamboos. Fruit characters are thus not reliable indicators of phylogeny and bacoid caryopsis likely represents a specialization for particular ecological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号