首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We synthesized all eight possible A-ring diastereomers of 2-methyl substituted analogs of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] and also all eight A-ring diastereomers of 2-methyl-20-epi-1alpha,25(OH)2D3. Their biological activities, especially the antagonistic effect on non-genomic pathway-mediated responses induced by 1alpha,25(OH)2D3 or its 6-s-cis-conformer analog, 1alpha,25(OH)2-lumisterol3, were assessed using an NB4 cell differentiation system. Antagonistic activity was observed for the 1beta-hydroxyl diastereomers, including 2beta-methyl-1beta,25(OH)2D3 and 2beta-methyl-3-epi-1beta,25(OH)2D3. Very interestingly, 2beta-methyl-3-epi-1alpha,25(OH)2D3 also antagonized the non-genomic pathway, despite its 1alpha-hydroxyl group. Other 1alpha-hydroxyl diastereomers did not show antagonistic activity. 20-epimerization diminished the antagonistic effect of all of these analogs on the non-genomic pathway. These findings suggested that the combination of the 2-methyl substitution of the A-ring and 20-epimerization of the side chain could alter the biological activities in terms of antagonism of non-genomic pathway-mediated biological response. Based on a previous report, 2-methyl substitution alters the equilibrium of the A-ring conformation between the alpha- and beta-chair conformers. The 2beta-methyl diastereomers, which exhibited antagonism on non-genomic pathway-mediated response, were considered to prefer the beta-conformer. Further examination to elucidate the relationship between the altered ligand shape and receptors interaction will be important for molecular level understanding of the mechanism of antagonism of the non-genomic pathway.  相似文献   

2.
A concise route to 1alpha,3beta-diamino-25-hydroxy-3-deoxyvitamin D(3) (5) and 1beta,3alpha-diamino-25-hydroxy-3-deoxyvitamin D(3) (6) has been developed starting from (R)- or (S)-carvone for the construction of the modified A-ring fragments. The conversion of the hydroxyl group to amine function with complete inversion of the configuration was efficiently accomplished by Mitsunobu reaction using phthalimide as nucleophile or activation of the hydroxyl group as mesylate followed by reaction with NaN(3). Diamino 5 and 6 as well as monoamino 3, 4, 30, and 31 vitamin D(3) derivatives have shown poor binding to VDR compared with 1alpha,25-dihydroxyvitamin D(3). The most active compound in the inhibition of MCF-7 cell proliferation and HL 60 cell differentiation was 1alpha-amino analogue 3. Also, very low in vivo calcemic effects of derivatives 3 and 4 were found.  相似文献   

3.
The synthesis of new analogues of 1alpha,25-dihydroxyvitamin D3 containing a carbamate function at the A-ring fragment has been described using the cross-coupling approach. The carbamate group was selectively introduced at the C-3 position by regioselective enzymatic alkoxycarbonylation of A-ring enyne 3 and subsequent treatment with ammonia, amines, amino alcohols, and amino acids. Biological studies to evaluate the potency of all five of these carbamate analogues were performed and demonstrated very low binding affinity for the vitamin D receptor compared with 1alpha,25-dihydroxyvitamin D3. Moreover, all the carbamate analogues were less active than 1alpha,25-dihydroxyvitamin D3 in inhibiting cell proliferation or stimulating cell differentiation. Of all the five analogues, the 3-O-carbamoyl-1alpha,25-(OH)2-D3 analogue 10a was the most potent one in vitro. However, all investigated carbamate analogues demonstrated lower calcemic effects in vivo than the parent compound.  相似文献   

4.
Novel 2alpha-substituted 1alpha,25-dihydroxyvitamin D3 analogues were efficiently synthesized and their biological activities were evaluated. 2alpha-Methyl-1alpha,25-dihydroxyvitamin D3 (2), whose unique biological activities were previously reported, was modified to 2alpha-alkyl (ethyl and propyl) and 2alpha-hydroxyalkyl (hydroxymethyl, hydroxyethyl, and hydroxypropyl) analogues 3-7 by elongation of the alkyl chain and/or introduction of a terminal hydroxyl group. 2alpha-Hydroxypropyl-1alpha,25-dihydroxyvitamin D3 (7) exhibited an exceptionally potent calcium-regulating effect and a unique activity profile.  相似文献   

5.
6.
All four possible A-ring stereoisomers of 2,2-dimethyl-1,25-dihydroxyvitamin D(3) (4) were designed and convergently synthesized. Nine-step conversion of methyl hydroxypivalate 6 provided the desired A-ring enyne synthon (13a,b) in good overall yield. Cross-coupling reaction of the A-ring synthon 13a,b with the CD-ring portion in the presence of palladium catalyst, followed by deprotection, gave the vitamin analogues (4a-d). We also synthesized four stereoisomers of 2,2-ethano-1,25-dihydroxyvitamin D(3) (5), as novel spiro-ring analogues having cyclopropane fused at the C2 position. Biological potencies of the synthesized compounds were assessed in terms of the vitamin D receptor (VDR) binding affinity, as well as the HL-60 cell differentiation-inducing activity. The 2,2-ethano analogue 5a showed a comparable activity to the natural hormone 1, while the 2,2-dimethyl analogue 4a exhibited one-third of the activity of 1 in cell differentiation, with the reduced VDR binding affinity.  相似文献   

7.
The synthesis and biological properties of seco-C-9,11-bisnor-17-methyl-1 alpha,25-dihydroxyvitamin D(3) novel D-ring analogues are described.  相似文献   

8.
The synthesis of a new class of vitamin D3 analogues in which two units of 1alpha,25-dihydroxyvitamin D3 are linked at the C-3 position by a dicarbamate functionality of variable length is described. The analogues demonstrated no affinity for the vitamin D receptor and possessed no antiproliferative or transactivating properties.  相似文献   

9.
A series 2a-4b of seven new side-chain ketone analogs of calcitriol (1) have been prepared. Unexpectedly, several of these 24- and 25-tert-butyl ketones, even though lacking the classical side-chain tertiary hydroxyl group, are considerably more antiproliferative in vitro than the hormone calcitriol (1) even at physiologically relevant low nanomolar concentrations and are less calcemic than calcitriol (1) in vivo. In addition, ketone analog 19-nor-2a is not significantly less calcemic in vivo than 19-methylene analog 2a.  相似文献   

10.
The synthesis and biological activity of novel CD-ring modified analogues of 22-oxa-1alpha,25-dihydroxyvitamin D(3), lacking the D-ring and featuring a connection between C-12 and C-21 (cis-perhydrindane CE-ring analogues), is described. The synthesis of the CE-ring system follows Meyers' methodology for the preparation of enantiomerically pure hydrinden-2-ones. The analogues show a complete lack of binding affinity for the vitamin D receptor (pig nVDR) and of antiproliferative activity (MCF-7 cells), as compared to calcitriol.  相似文献   

11.
Chemically synthesized 1 alpha-hydroxy-25-fluorovitamin D3 was compared to 1,25-dihydroxyvitamin D3 for potency in the chick intestinal cytosol-binding protein assay, induction of intestinal calcium transport, mobilization of calcium from bone, and epiphyseal plate calcification in the rat. The 25-fluorinated analogue causes 50% displacement of 1,25-dihydroxy[23,24-3H]D3 at 1.8 X 10(-8) M in the competitive protein-binding assay, whereas only 5.6 X 10(-11) M of unlabeled 1,25-dihydroxyvitamin D3 is needed for equal competition. This 315-fold difference between and 1 alpha-hydroxy-25-fluorovitamin D3 indicates that the fluoro analogue is about equipotent with 1 alpha-hydroxyvitamin D3 in the protein-binding assay. However, 1 alpha-hydroxy-25-fluorovitamin D3 is 1/50 as active as 1,25-dihydroxyvitamin D3 in vivo in the stimulation of intestinal calcium transport and bone calcium mobilization in vitamin D deficient rats on a low-calcium diet. Likewise, 1 alpha-hydroxy-25-fluorovitamin D3 is about 40 times less active than 1,25-dihydroxyvitamin D3 in inducing endochondrial calcification in rachitic rats. No selective actions of 1alpha-hydroxy-25-fluorovitamin D3 were noted. Since the 25 position of the analogue is blocked by a fluorine atom, it appears that 25-hydroxylation of 1 alpha-hydroxylated vitamin D compounds in vivo is not an obligatory requirement for appreciable vitamin D activity.  相似文献   

12.
The synthesis and biological activities of seco C-9,11,21-trisnor-17-methyl-1 alpha,25-dihydroxyvitamin D(3) analogues (D-ring analogues) are described.  相似文献   

13.
Four new side-chain amide (2 and 3) and hydroxamate (4 and 5) analogs of the hormone calcitriol (1) have been prepared. Even though lacking the 25-OH group characteristic of natural calcitriol (1), analogs 2-4 are as antiproliferative in vitro as calcitriol (1) but are 20-40 times less calciuric in vivo than calcitriol (1).  相似文献   

14.
Biological activity of 24-epi-1 alpha,25-dihydroxyvitamin D-2 (24-epi-1,25(OH)2D2) and 1 alpha,25-dihydroxyvitamin D-7 (1,25(OH)2D7), the 22,23-dihydro derivative of the former compound, was investigated. Both of the vitamin D derivatives stimulated intestinal calcium transport and calcium mobilization from bones in rats; however, the effect was about 50% of that of 1 alpha,25-dihydroxyvitamin D-3 (1,25(OH)2D3). On the other hand, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 inducement of HL-60 human leukemia cell differentiation was comparable to that of 1,25(OH)2D3. Accordingly, the differentiation-inducing activity of 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 was much greater than their ability to stimulate calcium metabolism. In contrast to 1,25(OH)2D3, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 exerted little hypercalcemic activity in mice. These results suggest that both vitamin D derivatives will be useful as anti-tumor agents.  相似文献   

15.
1Alpha,25-dihydroxyvitamin D3 diastereomer, differing from the parent compound in configuration at four asymmetric carbon atoms in the rings C/D and side chain (C13, C14, C17 and C20), was synthesized and shown to have a significant affinity for the vitamin D receptor.  相似文献   

16.
A mild and stereoconvergent synthesis of 1alpha,25-dihydroxyvitamin D(3) (calcitriol, 1a) is described. The key step is a cascade process consisting of two consecutive transformations: An initial palladium-catalyzed 6-exo-cyclocarbopalladation of vinyl triflate 4 followed by a Negishi cross-coupling reaction with alkenyl zinc 3. This approach is of interest for the rapid synthesis of a variety of new vitamin D(3) analogues of therapeutic potential, especially those modified at the triene and ring-A. The mildness of the method also allows the preparation of thermal sensitive vitamin D(3) analogues.  相似文献   

17.
A new fluoro analog of 1,25-dihydroxyvitamin D3, i.e., 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3, has been compared with the native hormone, 1,25-dihydroxyvitamin D3, in its biological potency, duration of action, and binding to the vitamin D transport protein and intestinal receptor protein. The fluoro analog is about 5 times more active than the native hormone in healing rickets and elevating serum inorganic phosphorus levels of rachitic rats. It is about 10 times more active than 1,25-dihydroxyvitamin D3 in increasing intestinal calcium transport and bone calcium mobilization of vitamin D-deficient rats fed a low-calcium diet. Furthermore, the higher biopotency is manifested in animals after oral dosing. Of great importance is that the action of the fluoro analog is longer lasting than that of 1,25-dihydroxyvitamin D3. This is especially apparent in the elevation of serum phosphorus and bone mineralization responses. The fluoro analog is only slightly less competent than 1,25-dihydroxyvitamin D3 in binding to the vitamin D transport protein in rat blood, and is one-third as competent as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. These results suggest that the basis for increased potency of this analog is likely the result of less rapid metabolism.  相似文献   

18.
19.
The synthesis and biological activity of novel CD-ring modified analogues of 22-oxa-1alpha,25-dihydroxyvitamin D(3), lacking the D-ring and featuring a connection between C-18 and C-21 (spiro[5.5]undecane CF-ring analogues), is described. The central ring system is conveniently synthesised from an achiral intermediate. The analogues have marginal binding affinity for the nVDR and possess low to moderate genomic activity.  相似文献   

20.
The 2alpha-methyl-, 2alpha-(3-hydroxypropyl)-, and 2alpha-(3-hydroxypropoxy)-derivatives of the 'double side chain' analogue of 1alpha,25-dihydroxyvitamin D(3) were synthesized using Trost A-ring/CD-ring connective strategy. Regarding the requisite A-ring building blocks, a new, high yield and stereoselective route to the 2alpha-methyl compound starting from D-glucose was developed. All three new analogues showed potent HL-60 cancer cell differentiation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号