首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three-dimensional structure of the ligand binding domain (LBD) of the vitamin D receptor (VDR) docked with the natural ligand 1 alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] has been mostly solved by the X-ray crystallographic analysis of the deletion mutant (VDR-LBD Delta 165-215). The important focus, from now on, is how the VDR recognizes and interacts with potent synthetic ligands. We now report the docking models of the VDR with three functionally and structurally interesting ligands, 22-oxa-1,25-(OH)(2)D(3) (OCT), 20-epi-1,25-(OH)(2)D(3) and 20-epi-22-oxa-24,26,27-trihomo-1,25-(OH)(2)D(3). In parallel with the computational docking studies, we prepared twelve one-point mutants of amino acid residues lining the ligand binding pocket of the VDR and examined their transactivation potency induced by 1,25-(OH)(2)D(3) and these synthetic ligands. The results indicate that L233, R274, W286, H397 and Y401 are essential for holding the all ligands tested, S278 and Q400 are not important at all, and the importance of S237, V234, S275, C288 and H305 is variable depending on the side-chain structure of the ligands. Based on these studies, we suggested key structural factors to bestow the selective action on OCT and the augmented activities on 20-epi-ligands. Furthermore, the docking models coincided well with our proposed active space-region theory of vitamin D based on the conformational analyses of ligands.  相似文献   

2.
3.
An improved synthesis of the diastereomers of 1alpha,25-dihydroxyvitamin D3 (1) was accomplished utilizing our practical route to the A-ring synthon. We applied this procedure to synthesize for the first time all possible A-ring diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). Ten-step conversion of 1-(4-methoxyphenoxy)but-3-ene (6), including enantiomeric introduction of the C-3 hydroxyl group to the olefin by the Sharpless asymmetric dihydroxylation, provided all four possible stereoisomers of A-ring enynes (3). i.e., (3R,5R)-, (3R,5S)-, (3S,5R)- and (3S,5S)-bis[(tert-butyldimethylsilyl)oxy]oct-1-en-7-yne, in good overall yield. Palladium-catalyzed cross-coupling of the A-ring synthon with the 20-epi CD-ring portion (5), (E)-(20S)-de-A,B-8-(bromomethylene)cholestan-25-ol, followed by deprotection, afforded the requisite diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). The biological profiles of the synthesized stereoisomers were assessed in terms of affinities for vitamin D receptor (VDR) and vitamin D binding protein (DBP). HL-60 cell differentiation-inducing activity and in vivo calcium-regulating potency in comparison with the natural hormone.  相似文献   

4.
We found a concise route to the Trost A-ring precursor enyne for synthesizing 2alpha-alkylated 1alpha,25-dihydroxyvitamin D(3) (1) from D-glucose. The enynes were coupled with the 20-epi-CD ring part to study the effect of the double modification of 2alpha-substitution and 20-epimerization upon biological activities of 1. The novel three analogues of 2alpha-alkyl- and four analogues of 2alpha-(omega-hydroxyalkyl)-20-epi-1alpha,25-dihydroxyvitamin D(3) (5b-d and 6a-d) showed higher binding affinity for vitamin D receptor (VDR) and more potent activity in induction of HL-60 cell differentiation than those of the natural hormone 1.  相似文献   

5.
6.
All four possible A-ring stereoisomers of 2,2-dimethyl-1,25-dihydroxyvitamin D(3) (4) were designed and convergently synthesized. Nine-step conversion of methyl hydroxypivalate 6 provided the desired A-ring enyne synthon (13a,b) in good overall yield. Cross-coupling reaction of the A-ring synthon 13a,b with the CD-ring portion in the presence of palladium catalyst, followed by deprotection, gave the vitamin analogues (4a-d). We also synthesized four stereoisomers of 2,2-ethano-1,25-dihydroxyvitamin D(3) (5), as novel spiro-ring analogues having cyclopropane fused at the C2 position. Biological potencies of the synthesized compounds were assessed in terms of the vitamin D receptor (VDR) binding affinity, as well as the HL-60 cell differentiation-inducing activity. The 2,2-ethano analogue 5a showed a comparable activity to the natural hormone 1, while the 2,2-dimethyl analogue 4a exhibited one-third of the activity of 1 in cell differentiation, with the reduced VDR binding affinity.  相似文献   

7.
We synthesized all eight possible A-ring diastereomers of 2-methyl substituted analogs of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] and also all eight A-ring diastereomers of 2-methyl-20-epi-1alpha,25(OH)2D3. Their biological activities, especially the antagonistic effect on non-genomic pathway-mediated responses induced by 1alpha,25(OH)2D3 or its 6-s-cis-conformer analog, 1alpha,25(OH)2-lumisterol3, were assessed using an NB4 cell differentiation system. Antagonistic activity was observed for the 1beta-hydroxyl diastereomers, including 2beta-methyl-1beta,25(OH)2D3 and 2beta-methyl-3-epi-1beta,25(OH)2D3. Very interestingly, 2beta-methyl-3-epi-1alpha,25(OH)2D3 also antagonized the non-genomic pathway, despite its 1alpha-hydroxyl group. Other 1alpha-hydroxyl diastereomers did not show antagonistic activity. 20-epimerization diminished the antagonistic effect of all of these analogs on the non-genomic pathway. These findings suggested that the combination of the 2-methyl substitution of the A-ring and 20-epimerization of the side chain could alter the biological activities in terms of antagonism of non-genomic pathway-mediated biological response. Based on a previous report, 2-methyl substitution alters the equilibrium of the A-ring conformation between the alpha- and beta-chair conformers. The 2beta-methyl diastereomers, which exhibited antagonism on non-genomic pathway-mediated response, were considered to prefer the beta-conformer. Further examination to elucidate the relationship between the altered ligand shape and receptors interaction will be important for molecular level understanding of the mechanism of antagonism of the non-genomic pathway.  相似文献   

8.
Construction of 25-hydroxy-steroidal side chain substituted with iodine at C-22 was elaborated on a model PTAD-protected steroidal 5,7-diene and applied to a synthesis of (22R)- and (22S)-22-iodo-1alpha,25-dihydroxyvitamin D3. Configuration at C-22 in the iodinated vitamins, obtained by nucleophilic substitution of the corresponding 22S-tosylates with sodium iodide, was determined by comparison of their iodine-displacement processes and cyclizations leading to isomeric five-membered (22,25)-epoxy-1alpha-hydroxyvitamin D3 compounds. Also, 20(22)-dehydrosteroids have been obtained and their structures established by 1H NMR spectroscopy. When compared to the natural hormone, (E)-20(22)-dehydro-1alpha,25-dihydroxyvitamin D3 was found 4 times less potent in binding to the porcine intestinal vitamin D receptor (VDR) and 2 times less effective in differentiation of HL-60 cells. 22-Iodinated vitamin D analogues showed somewhat lower in vitro activity, whereas (22,25)-epoxy analogues were inactive. Interestingly, it was established that (22S)-22-iodo-1alpha,25-dihydroxyvitamin D3 was 3 times more potent than its (22R)-isomer in binding to VDR and four times more effective in HL-60 cell differentiation assay. The restricted mobility of the side chain of both 22-iodinated vitamin D compounds was analyzed by a systematic conformational search indicating different spatial regions occupied by their 25-oxygen atoms. Preliminary data on the in vivo calcemic activity of the synthesized vitamin D analogues indicate that (E)-20(22)-dehydro-1alpha,25-dihydroxyvitamin D3 and 22-iodo-1alpha,25-dihydroxyvitamin D3 isomers were ca. ten times less potent than the natural hormone 1alpha,25-(OH)2D3 both in intestinal calcium transport and bone calcium mobilization.  相似文献   

9.
Treatment of NB4 acute promyelocytic leukemia cells with 1,25-dihydroxyvitamin D3 (1,25D3) or analogs 20-epi-22-oxa-24a,26a,27a-trihomo-1alpha,25-dihydroxyvitamin D3, 1,24-dihydroxy-22-ene-24-cyclopropylvitamin D3, 1alpha,25-dihydroxylumisterol3, or 1alpha,25(OH)2-d5-previtamin D3 in combination with TPA induces monocytic differentiation. The role of 1,25D3 in the induction of maturation has been shown to be a priming effect. Differentiation in response to these agents requires VDR-independent signaling of 1,25D3, PKC signaling, intracellular calcium, and calpain activity. In this study we identify the NFkappaB/IkappaB signaling pathway as a target of 1,25D3 and TPA action. One of the priming effects of 1,25D3 appears to be the rapid phosphorylation of serine residues on IkappaBalpha. On their own, 1,25D3, its analogs, and TPA do not alter IkappaBalpha expression; however, combinations of analogs with TPA result in a synergistic decrease in IkappaBalpha expression. Decreased expression of IkappaBalpha likely results from enhanced degradation, which allows the observed subsequent nuclear translocation of NFkappaB subunit p65. Since nuclear-localized NFkappaB was observed only in combination-treated cells, it is proposed that nuclear targets of NFkappaB are required for monocytic differentiation. Intracellular calcium and proteolytic activity are both necessary for the induction of IkappaB regulation and translocation of NFkappaB and are critical components of the nongenomic signaling cascades of the 1,25D3-induced differentiation pathway.  相似文献   

10.
Biological activity of 24-epi-1 alpha,25-dihydroxyvitamin D-2 (24-epi-1,25(OH)2D2) and 1 alpha,25-dihydroxyvitamin D-7 (1,25(OH)2D7), the 22,23-dihydro derivative of the former compound, was investigated. Both of the vitamin D derivatives stimulated intestinal calcium transport and calcium mobilization from bones in rats; however, the effect was about 50% of that of 1 alpha,25-dihydroxyvitamin D-3 (1,25(OH)2D3). On the other hand, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 inducement of HL-60 human leukemia cell differentiation was comparable to that of 1,25(OH)2D3. Accordingly, the differentiation-inducing activity of 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 was much greater than their ability to stimulate calcium metabolism. In contrast to 1,25(OH)2D3, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 exerted little hypercalcemic activity in mice. These results suggest that both vitamin D derivatives will be useful as anti-tumor agents.  相似文献   

11.
12.
M Inoue  M Wakasugi  R Wakao  N Gan  M Tawata  Y Nishii  T Onaya 《Life sciences》1992,51(14):1105-1112
We investigated the effect of 22-oxa-1,25-dihydroxyvitamin D3, a synthetic analogue of vitamin D3, on the production of prostacyclin by vascular tissues using rat aortic rings and A7r5 cells derived from fetal rat aortic smooth muscle. Prostacyclin synthesis by aortic rings of rats treated with 22-oxa-1,25-dihydroxyvitamin D3 was much higher than that of non-treated controls, but did not cause any significant hypercalcemia. Treatment with 22-oxa-1,25-dihydroxyvitamin D3 significantly increased the production of prostacyclin by A7r5 cells for 48 hours in a dose-dependent manner. In time-course studies, cells incubated with 22-oxa-1,25-dihydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 produced prostacyclin progressively over a period of 48 hours. The shortest period of incubation that produced a significant amount of prostacyclin compared with control cultures was 24 hours. We observed that treatment with 22-oxa-1,25-dihydroxyvitamin D3 induced cyclooxygenase mRNA in A7r5 cells. Our data suggest that 22-oxa-1,25-dihydroxyvitamin D3 may possibly be a protective substance against the development of atherosclerosis by modulating prostaglandin metabolism.  相似文献   

13.
A 3-position diastereomer of 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3 (ED-71, 2), 3-epi-ED-71 (4), was synthesized by the convergent method coupling the A-ring fragment (5) with the C/D-ring fragment (6). As the results of preliminary in vitro biological evaluation of 3-epi-ED-71 (4), the inhibition of parathyroid hormone secretion in bovine parathyroid cells and binding affinity to human recombinant vitamin D receptor and to human vitamin D binding protein in comparison with ED-71 (2), 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, 1), and 3-epi-1,25(OH)2D3 (3) are described.  相似文献   

14.
In vitro incubation of 24-epi-25-hydroxyvitamin D2 with chicken kidney homogenate produced several compounds, one of which had an affinity equal to that of 1,25-dihydroxyvitamin D2 for the chick intestinal receptor. The affinity of 24-epi-1,25-dihydroxyvitamin D2 for the same receptor was found to be half that of 1,25-dihydroxyvitamin D2. The unknown compound was produced only when homogenate was prepared from pooled kidneys taken from both vitamin D deficient and replete chickens. The compound has been tentatively identified as 1,25-dihydroxy-22-dehydro-26-homovitamin D3 by ultraviolet absorption spectrophotometry and mass spectrometry. Chemical synthesis of 1,25-dihydroxy-22-dehydro-26-homovitamin D3 provided additional evidence for the structure. Administration of this 26-homologue of 1,25-dihydroxyvitamin D3 at the dose level of 650 pmol/rat stimulated bone calcium mobilization in the hypocalcemic rat equal to that of 1,25-dihydroxyvitamin D3. Thus, this paper demonstrates unique methyl migration on the side chain of 24-epi-1,25-dihydroxyvitamin D3 to form a more biologically potent analogue.  相似文献   

15.
The function and precise mechanism of regulation of calbindin-D 9k in intestine is largely unknown. It is suggested that this calcium binding protein is involved in active intestinal calcium transport and that its expression is mainly mediated by 1,25-dihydroxyvitamin D3. We examined the effect of two side chain modified analogs of 1,25-dihydroxyvitamin D3 as compared to 1,25-dihydroxyvitamin D3 itself on the regulation of the calbindin-D 9k at the mRNA level and on intestinal calcium transport in the rat. delta 22-24,24-dihomo-1,25-dihydroxyvitamin D3 at a single dose of 500, 1,000, and 2,000 pmol caused greater than 7.0-fold increase in calbindin-D 9k mRNA without stimulating intestinal calcium transport. A 10,000-pmol dose of delta 22-24,24,24-trihomo-1,25-dihydroxyvitamin D3 caused a 7.6-fold increase in calbindin-D 9k mRNA without significantly increasing intestinal absorption of calcium. In contrast, 1,25-dihydroxyvitamin D3 caused a parallel increase in calbindin-D 9k mRNA and intestinal absorption of calcium. Thus, calbindin 9k is not by itself responsible for 1,25-dihydroxyvitamin D3-mediated increase in intestinal absorption of calcium.  相似文献   

16.
Novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-dihydroxyvitamin D3 and 26-homo-delta 22-1 alpha,25(R)-dihydroxyvitamin D3 were compared with the native hormone, 1,25-dihydroxyvitamin D3, and with other vitamin D3 derivatives, in inhibition of cell growth, induction of phenotypic differentiation, and c-myc mRNA reduction of HL-60 cells. The degree of inhibition in cell growth caused by 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 was the greatest followed by 26-homo-delta 22-1 alpha,25(R)-(OH)2D3. The ability to reduce NBT was parallel to that to inhibit cellular proliferation. 26-homo-delta 22-1 alpha,25(S)-(OH)2D3, 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, 24-homo-24-F2-1 alpha,25-(OH)2D3, and 1 alpha,24(R)-(OH)2-26-Cl-D3 were more active than 1 alpha,25-(OH)2D3 in the induction of OK-M1+ and OK-Mo-2+ HL-60 cells. Using two color flow cytometric analysis, the percentages of OK-M5(+)- and OK-DR(+)-HL-60 cells were 33% in the treatment with 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 plus interferon-gamma (IFN-gamma) but 14% in the treatment with 1 alpha,25-(OH)2D3 plus IFN-gamma. 26-Homo-delta 22-1 alpha,25(S)-(OH)2D3 has an inhibitory effect on c-myc reduction in treated HL-60 cells. These results suggest that the novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 and 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, have preferential activity in inducing phenotypic differentiation and in inducing cell proliferation related c-myc mRNA activity.  相似文献   

17.
The synthesis of new analogues of 1alpha,25-dihydroxyvitamin D3 containing a carbamate function at the A-ring fragment has been described using the cross-coupling approach. The carbamate group was selectively introduced at the C-3 position by regioselective enzymatic alkoxycarbonylation of A-ring enyne 3 and subsequent treatment with ammonia, amines, amino alcohols, and amino acids. Biological studies to evaluate the potency of all five of these carbamate analogues were performed and demonstrated very low binding affinity for the vitamin D receptor compared with 1alpha,25-dihydroxyvitamin D3. Moreover, all the carbamate analogues were less active than 1alpha,25-dihydroxyvitamin D3 in inhibiting cell proliferation or stimulating cell differentiation. Of all the five analogues, the 3-O-carbamoyl-1alpha,25-(OH)2-D3 analogue 10a was the most potent one in vitro. However, all investigated carbamate analogues demonstrated lower calcemic effects in vivo than the parent compound.  相似文献   

18.
The binding of vitamin D3 analogues to the chick intestinal cytosol receptor was studied. In intestinal cytosol fraction, receptor proteins having the sedimentation constant of 2.5 S and 3.7 S to which 1 alpha,25-dihydroxyvitamin D3 binds were present, and the latter was specific for the compound. The binding of 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3 to the receptor was also observed, while very weak binding was seen in the case of 24(R)25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. The binding affinity of 1 alpha,24(R)-dihydroxyvitamin D3 to the 3.7 S receptor was 1.3 times as high as that of 1 alpha,25-dihydroxyvitamin D3, whereas those of 1 alpha,24(S)-dihydroxyvitamin D3, 1 alpha-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were 10, 304 and 652 times lower than 1 alpha,25-dihydroxyvitamin D3, respectively. The dissociation constant of the receptor-1 alpha,25-dihydroxyvitamin D3 complex at 0 degrees C was 3.0 x 10(-11) M, and the dissociation constants were calculated to be 2.4 x 10(-11) M and 2.7 x 10(-10) M for the complexes with 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3, respectively.  相似文献   

19.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

20.
Three A-ring analogs of 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3)--2-nor-1,3-seco-1,25(OH)2D3 (2-nor analog), 2-oxa-3-deoxy-25-OH-D3 (2-oxa analog), and A-homo-3-deoxy-3,3-dimethyl-2,4-dioxa-25-OH-D3 (A-homo analog)--were tested for their ability to inhibit 25-OH-D3-1 alpha-hydroxylase (1 alpha-hydroxylase) in isolated mitochondria and to alter 25-OH-D3 metabolism in cultured chick kidney cells. The 2-nor and 2-oxa analogs were relatively potent (Kis of 60 and 30 nM, respectively, compared with 170 nM for 1,25(OH)2D3), whereas the A-homo analog was completely ineffective in inhibiting 1 alpha-hydroxylase activity. In contrast, all three analogs were able to repress 1 alpha-hydroxylase and induce 24-hydroxylase activity in cultured chick kidney cells, suggesting that this process is not one of direct action in the mitochondria, but is more likely to be a receptor-mediated one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号