首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Summary The immortalized human breast epithelial cell line MCF-10F is an important tool for studies on experimental tumorigenesis induced by drugs, transfected Ha-ras oncogene, and hormones. Considering that many relevant data have thus far been established only for MCF-10F cells cultivated on glass, and that there are data showing different cell death ratios for tumorigenic cells obtained from benzo[a]pyrene (BP)-transformed MCF-10F cells cultivated on plastic compared with glass, nuclear parameters estimated by image analysis and cell death ratios were compared for cells grown on plastic and glass substrates differing in chamber surface sizes and working culture medium volumes. It was concluded that for slides with a growth size equal to 9.4 cm2, plastic substrate was more advantageous than glass for growing MCF-10F cells because although the apoptotic ratios (AR) for the cells grown on plastic are low as it would be expected for nontransformed cells, they are bigger than those reported for the BP-transformed MCF-10F cells cultivated on the same substrate but closer to those of the BP-transformed MCF-10F cells receiving a normal chromosome 17. In addition, the plastic substrate did not induce variable nuclear image results as those found in the latter. The 0.5-cm2-sized chambers on plastic slides proved to be inadequate for cell nuclear image analysis and cell death studies on account of the variable geometric, densitometric, and textural results and ARs produced and the unpublished consideration of a very slow growth rate generated under this growth condition.  相似文献   

3.
The immortalized human breast epithelial MCF-10F cell line, although estrogen receptor alpha negative, develops cell proliferating activities and invasiveness indicative of neoplastic transformation, after treatment with 17-beta-estradiol (E-2). These effects are similar to those produced by benzo[a]pyrene (BP). Since we have previously reported changes in the nuclear parameters accompanying BP-induced tumorigenesis in MCF-10F cells, we have examined whether similar alterations occur in E-2-treated cells. We therefore studied DNA amounts and other nuclear parameters in Feulgen-stained MCF-10F cells after treatment with various concentrations of E-2, BP, the estrogen antagonist ICI 182,780, and E-2 in the presence of ICI 182,780. E-2 caused a certain loss of DNA and changes in the nuclear size and chromatin supraorganization of MCF-10F cells. Many of these changes were similar to those produced by BP and were indicative of neoplastic transformation. More intense chromatin remodelling was seen with 70 nM E-2. Since these changes were not abrogated totally or partially by ICI 182,780, the neoplastic transformation of MCF-10F cells stimulated by E-2 involved a process that was independent of estrogen alpha-receptors. The changes produced by ICI 182,780 alone were attributed to effects other than its well-known anti-estrogenic activity.  相似文献   

4.
Apoptosis and mitotic death, bi- and multinucleation, giant cells and micronucleation were investigated in human breast epithelial cell lines transformed by benzo[a]pyrene (BP) (BP1, BP1-E and BP1-E1 cells) and in BP1 cells transfected with the c-Ha-ras oncogene (BP1-Tras cells). Since BP induces apoptosis and the abnormal expression of ras genes elicits catastrophic mitosis, both cell death phenomena were expected to occur in this system, especially in BP1-Tras cells. Regardless of the cell line considered, single-nucleate cells were found to be eliminated preferentially through apoptosis, while bi- and multinucleate cells were eliminated through catastrophic mitosis. Apoptosis and catastrophic mitosis were observed in all cell lines but were significantly more frequent in BP1-Tras cells. The abnormal expression of Ha-ras in the latter cells may enhance in this system the effects of the BP apoptosis path reported for BP-transformed Hepa 1c1c7 hepatoma cells. Transfection with the ras oncogene also enhanced the mitotic disturbances, which produced multi- and micronucleation and mitotic death, possibly because of the genomic instability promoted by this oncogene in the BP-transformed cell line.  相似文献   

5.
Both estrogen receptors (ER) alpha (ERalpha) and beta (ERbeta) are localized in the nucleus, plasma membrane, and mitochondria, where they mediate the different physiological effects of estrogens. It has been observed that the relative subcellular localization of ERs is altered in several cancer cells. We have demonstrated that MCF-10F cells, the immortal and non-tumorigenic human breast epithelial cells (HBEC) that are ERalpha-negative and ERbeta-positive, are transformed in vitro by 17beta-estradiol (E(2)), generating highly invasive cells that are tumorigenic in severe combined immunodeficient mice. E(2)-transformed MCF-10F (trMCF) cells exhibit progressive loss of ductulogenesis, invasive (bsMCF) and tumorigenic (caMCF) phenotypes. Immunolocalization of ERbeta by confocal fluorescent microscopy and electron microscopy revealed that ERbeta is predominantly localized in mitochondria of MCF-10F and trMCF cells. Silencing ERbeta expression with ERbeta-specific small interference RNA (siRNA-ERbeta) markedly diminishes both nuclear and mitochondrial ERbeta in MCF-10F cells. The ERbeta shifts from its predominant localization in the mitochondria of MCF-10F and trMCF cells to the nucleus of bsMCF cells, becoming predominantly nuclear in caMCF cells. Furthermore, we demonstrated that the mitochondrial ERbeta in MCF-10F cells is involved in E(2)-induced expression of mitochondrial DNA (mtDNA)-encoded respiratory chain (MRC) proteins. This is the first report of an association of changes in the subcellular localization of ERbeta with various stages of E(2)-induced transformation of HBEC and a functional role of mitochondrial ERbeta in mediating E(2)-induced MRC protein synthesis. Our findings provide a new insight into one of the potential roles of ERbeta in human breast cancer.  相似文献   

6.
OBJECTIVE: Atherosclerosis is a fibroproliferative disease which has been attributed to several factors including genetic and molecular alterations. Initial studies have shown genetic alterations at the microsatellite level in the DNA of atherosclerotic plaques. Extending our initial findings, we performed a microsatellite analysis on cerebral atherosclerotic plaques. METHODS: Twenty-seven cerebral atherosclerotic plaques were assessed for loss of heterozygosity (LOH) and microsatellite instability (MI) using 25 microsatellite markers located on chromosomes 2, 8, 9 and 17. DNA was extracted from the vessels as well as the respective blood from each patient and subjected to polymerase chain reaction. RESULTS: Our analyses revealed that specific loci on chromosomes 2, 8, 9 and 17 exhibited a significant incidence of LOH. Forty-six percent of the specimens showed loss of heterozygosity at 2p13-p21, 48% exhibited LOH at 8p12-q11.2, while allelic imbalance was detected in 47% of the cases. The LOH incidence was 39%, 31% and 27% at 17q21, 9q31-34 and 17p13, respectively. Genetic alterations were detected at a higher rate as compared to the corresponding alterations observed in plaques from other vessels. DISCUSSION: This is the first microsatellite analysis using atherosclerotic plaques obtained from cerebral vessels. Our results indicate an elevated mutational rate on specific chromosomal loci, suggesting a potential implication of these regions in atherogenesis.  相似文献   

7.
The role of estrogen in the initiation of breast cancer   总被引:11,自引:0,他引:11  
Estrogens are considered to play a major role in promoting the proliferation of both the normal and the neoplastic breast epithelium. Their role as breast carcinogens has long been suspected and recently confirmed by epidemiological studies. Three major mechanisms are postulated to be involved in their carcinogenic effects: stimulation of cellular proliferation through their receptor-mediated hormonal activity, direct genotoxic effects by increasing mutation rates through a cytochrome P450-mediated metabolic activation, and induction of aneuploidy. Recently it has been fully demonstrated that estrogens are carcinogenic in the human breast by testing in an experimental system the natural estrogen 17β-estradiol (E2) by itself or its metabolites 2-hydroxy, 4-hydroxy, and 16-a-hydroxy-estradiol (2-OH-E2, 4-OH-E2, and 16--OH E2), respectively, by inducing neoplastic transformation of human breast epithelial cells (HBEC) MCF-10F in vitro to a degree at least similar to that induced by the chemical carcinogen benz(a)pyrene (BP). Neither Tamoxyfen (TAM) nor ICI-182,780 abrogated the transforming efficiency of estrogen or its metabolites. The E2 induced expression of anchorage independent growth, loss of ductulogenesis in collagen, invasiveness in Matrigel, is associated with the loss of 9p11-13 and only invasive cells that exhibited a 4p15.3-16 deletion were tumorigenic. Tumors were poorly differentiated ER- and progesterone receptor negative adenocarcinomas that expressed keratins, EMA and E-cadherin. The E2 induced tumors and tumor-derived cell lines exhibited loss of chromosome 4, deletions in chromosomes 3p12.3-13, 8p11.1-21, 9p21-qter, and 18q, and gains in 1p, and 5q15-qter. The induction of complete transformation of the human breast epithelial cell MCF-10F in vitro confirms the carcinogenicity of E2, supporting the concept that this hormone could act as an initiator of breast cancer in women. This model provides a unique system for understanding the genomic changes that intervene for leading normal cells to tumorigenesis and for testing the functional role of specific genomic events taking place during neoplastic transformation.  相似文献   

8.
Analysis of microsatellite instability (MI) and loss of heterozygosity (LOH) is recommended for screening patients with sporadic and hereditary malignancies. This study shows an application of a fluorescent hexaplex PCR system for microsatellite typing on A.L.F. DNA Sequencer (Pharmacia Biotech). This technique detects changes in microsatellites providing a time-efficient, reliable and accurate method for MI and LOH analyses. The Fragment Manager software was used for automated size calculation and quantitation of DNA fragments, enabling rapid and precise measurement of allelic ratios. We examined 70 breast cancer and 70 control DNA specimens, classified all the patterns of microsatellite alterations, and set up MI and LOH assessment criteria for the automated multiplex fluorescent method.  相似文献   

9.
Loss of heterozygosity atBRCA1/2 loci in breast and ovarian tumors is a suggested risk factor for germlineBRCA1/2 mutation status. We evaluated the presence of losses of selected microsatellite markers localized on chromosomes 17 and 13q in hereditary and sporadic ovarian tumors. 151 consecutive primary ovarian tumors (including 21 withBRCA1/2 mutations and 130 without the mutations) were screened for loss of heterozygosity at loci on chromosomes 17 and 13q. Losses of heterozygosity of at least one microsatellite marker localized on chromosomes 17 and 13q were revealed in 123 (81.5%) and 104 (68.9%) tumors, respectively. Losses of all informative markers on chromosomes 17 and 13 occurred in 30 (19.9%) and 31 (20.5%) tumors, respectively. There was no difference in the frequency of losses atBRCA1 intragenic markers (D17S855 and D17S1323) between BRCA1-positive and BRCA1-negative patients. The frequency of losses on chromosome 17 was higher in high-grade than in low-grade carcinomas. Loss of heterozygosity on chromosomes 17 and 13q is a frequent phenomenon in both hereditary and sporadic ovarian cancers. The frequency of losses atBRCA1 intragenic markers in the ovarian tumor tissue is not strongly related to the presence ofBRCA1 germline mutations.  相似文献   

10.
11.
应用低温同步法与秋水酰胺处理,对人体乳腺癌细胞系Bcap-37和MCF-7的中期及早中期细胞进行G-显带分析。研究表明,Bcap-37细胞染色体众数为63,可识别其结构的标记染色体17条;MCF-7细胞染色体众数为56,可识别其结构的标记染色体13条。结合文献报道以及本研究结果显示,乳腺癌中最常涉及到第1、3、5、7、11、13和17号染色体结构及数目的异常,染色体断裂点1p11(1q11)、1p13、3p21、3q11、5q11、6q13、6q23、7q22、11p13和11p15也经常涉及;它们可能与癌相关基因的激活和抗癌基因的丢失有关,从而在乳腺癌发生发展中起一定作用。  相似文献   

12.
Breast cancer is a complex disease involving numerous genetic aberrations. Immunochemical analysis of protein expression is presented in a human breast epithelial cell line neoplastically transformed by high linear energy transfer (LET) α particle radiation in the presence of 17β estradiol (E) and in the parental human breast epithelial cell line (MCF-10F) which served as a non-tumorigenic control. The aim of this work was to determine the levels of mRNA and protein expression in control and transformed cells at various stages of the neoplastic process. The levels of mRNA and protein expression of PCNA, c-fos, JNK2 and Fra-1 were increased in the transformed cell line compared to the levels in non-tumorigenic control cells. The transforming factor Rho A was significantly increased only in the tumor cell line. Furthermore, the levels of mRNA and protein expression of ErbB2 were significantly increased in the transformed cell line and in tumor cells derived from the transformed cells after injecting them into nude mice. A decrease in RbA/p48 protein expression and mRNA levels was observed in cells treated with double doses of α particle radiation in the presence of estrogen, regardless of tumorigenicity. Such expression was lower than that in the control untreated MCF-10F cells. In summary, these studies show that estrogen and high LET-radiation induce changes in oncoprotein expression and mRNA levels of human breast cell lines. These changes are indicative of a cascade of events that characterize the process of cell transformation in breast cancer. These results provide evidence that multiple steps with consecutive changes are involved when normal cells become tumorigenic cells as a result of α particle irradiation and estrogen treatments.  相似文献   

13.
Human chorionic gonadotropin (hCG), a hormone produced during pregnancy, can elicit life-long refractoriness to carcinogenesis by differentiation of the breast epithelium. Human breast epithelial cells MCF-10F form tubules in collagen, mimicking the normal ductules. We have shown that 17 β-estradiol (E2) alter the ductulogenic pattern of these cells. The effect of the recombinant hCG (rhCG) in vitro was evaluated on the transformation of MCF-10F induced by E2. MCF-10F cells were treated with 70 nM E2 alone or in combination with 50 IU/ml rhCG during 2 weeks, while the controls were treated with DMSO (the solvent in which E2 was dissolved) or rhCG alone. At the end of treatment, the cells were plated in type I collagen matrix (3D-cultures) for detecting 2 main phenotypes of cell transformation, namely the loss of ductulogenic capacity and the formation of solid masses. Although E2 significantly increased solid mass formation, this effect was prevented when MCF-10F cells were treated with E2 in combination with rhCG. Furthermore, E2 increased the main duct width (p < 0.001), and caused a disruption of the luminal architecture, whereas rhCG increased the length of the tubules (p < 0.001) and produced tertiary branching. In conclusion, rhCG was able to abrogate the transforming abilities of estradiol, and had the differentiating property by increasing the branching of the tubules formed by breast epithelial cells in collagen. These results further support our hypothesis, known as the terminal differentiation hypothesis of breast cancer prevention, that predicts that hCG treatment results in protection from tumorigenic changes by the loss of susceptible stem cells 1 through a differentiation to refractory stem cells 2 and increase differentiation of the mammary gland.  相似文献   

14.
Breast cancer is a heterogeneous disease, previously associated with genomic instability. Our aim was to analyze microsatellite markers in order to determine patterns and levels of instability, as well as possible correlations with histopathological parameters. Polymerase chain reaction was used to characterize microsatellite instability (MSI) and loss of heterozygosity (LOH) in 107 breast carcinomas at twelve microsatellite loci. Some of the markers were selected because of their relation to steroid hormone metabolism, which seems to be related to sporadic breast cancer risk. D5S346 and D17S250 markers showed a statistically significant frequency of MSI. LOH in D3S1611, D17S250, AR and ER-β were associated with some parameters of worse prognosis. Marker group analysis showed that CYP19, AR and ER-β were related to histological grade III, ER-negative and PR-negative cases. Our results suggest that marker group analysis may be preferred to the single marker strategy, being predictive of worst prognosis when single markers are unable to provide such information. A further evaluation of steroid metabolism genes and their association with low penetrance genes in breast cancer may be useful.  相似文献   

15.
Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.  相似文献   

16.
The influence of 2-methoxyestradiol (2ME) was investigated on cell growth, morphology and spindle formation in a tumorigenic (MCF-7) and non-tumorigenic (MCF-12A) epithelial breast cell line. Inhibition of cell growth was more pronounced in the MCF-7 cells compared to the MCF-12A cells following 2ME treatment. Dose-dependent studies (10(-5)-10(-9) M) revealed that 10(-6) M 2ME inhibited cell growth by 44% in MCF-12A cells and by 84% in MCF-7 cells (p-value < 0.05). 2ME-treated MCF-7 cells showed abnormal metaphase cells, membrane blebbing, apoptotic cells and disrupted spindle formation. These observations were either absent or less prominent in MCF-12A cells. 2ME had no effect on the length of the cell cycle between S-phase and the time a mitotic peak was reached in either cell line but MCF-7 cells were blocked in mitosis with no statistically significant alterations in the phosphorylation status of Cdc25C. Nevertheless, Cdc2 activity was significantly increased in MCF-7 cells compared to MCF-12A cells (p-value < 0.05). The results indicate that 2ME disrupts mitotic spindle formation and enhances Cdc2 kinase activity, leading to persistence of the spindle checkpoint and thus prolonged metaphase arrest that may result in the induction of apoptosis. The tumorigenic MCF-7 cells were especially sensitive to 2ME treatment compared to the normal MCF-12A cells. Therefore, differential mechanism(s) of growth inhibition are evident between the normal and tumorigenic cells.  相似文献   

17.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6 Mb to map various LOH endpoints on the 45 Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I–IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15–20 Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

18.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

19.
C3H/He mice develop acute myeloid leukemia (AML) after whole-body irradiation, but the strain becomes highly susceptible to stem cell leukemia (SCL) when a null mutation is introduced into the Trp53 gene. To examine the etiology of SCL and the influence of chromosomal instability on leukemogenesis, 12 SCLs and two AMLs arising from Trp53-deficient C3H/He mice were investigated cytogenetically. Each SCL demonstrated cell-to-cell variation in the number and structural integrity of their chromosomes, indicating chromosomal instability. Typical deletion of chromosome 2 was observed in the two AML cases, while most SCL cells did not display this aberration. Deletions and rearrangements of chromosome 11 were noticeable in SCLs from Trp53 heterozygotes but not in AMLs. Analysis of loss of heterozygosity revealed that aberrations involving chromosome 11 in SCLs resulted in loss of the wild-type Trp53 allele. These results suggest that loss of Trp53 function triggers the tumorigenic process leading toward SCL through the induction of chromosomal instability, and that SCL and AML are distinct varieties of leukemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号