首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.  相似文献   

2.
《The Journal of cell biology》1989,109(6):2703-2720
A morphological analysis of the compartments of the endocytic pathway in baby hamster kidney (BHK) cells has been made using the fluid-phase marker horseradish peroxidase (HRP). The endocytic structures labeled after increasing times of endocytosis have been identified and their volume and surface densities measured. In the first 2 min of HRP uptake the volume density of the labeled structures increased rapidly and thereafter remained constant for the next 13-18 min. This plateau represents the volume density of endosome organelles and accounts for 0.65% of the cytoplasmic volume (or 6.8 microns 3 per cell). The labeled structures consist of tubular-cisternal elements which are frequently observed in continuity with 300-400 nm vesicles. After 15-20 min of internalization the volume density of HRP-labeled structures again increased rapidly and reached a second plateau between 30 and 60 min of labeling. This second increase corresponded to detectable levels of HRP reaching later, acid phosphatase (AcPase)-reactive compartments. These structures, comprising the prelysosomes and lysosomes, were mostly vesicular and collectively accounted for 3.5% of the cytoplasmic volume (or 37 microns 3 per cell). The absolute peripheral surface areas of the two classes of organelles (endosomes and prelysosomes/lysosomes) were estimated to be 430 and 370 microns 2 per cell, respectively. The volume of fluid internalized in the first 2 min of uptake was five- to sevenfold less than the volume of the compartment labeled in this time. To account for these results we propose that, after uptake from the cell surface, HRP is delivered to, and diluted in, endosomes that are preexisting organelles initially devoid of the marker. With increasing times of endocytosis the concentration of HRP in the early endosomes increases, as more of the marker enters this compartment. An elevation in HRP concentration in endosomes during the early time points was shown directly using anti- HRP antibodies and colloidal gold on cryosections. The stereological values given in the present study, in combination with earlier studies, provide a minimum estimate for both the total surface area of membranes and the rate of membrane synthesis in a BHK cell.  相似文献   

3.
《The Journal of cell biology》1984,99(4):1379-1390
We studied with morphometric methods the endocytosis by pheochromocytoma cells of a conjugate of wheat germ agglutinin with ferritin (WGA-Ft) and of horseradish peroxidase (HRP). Quantitative studies indicated that WGA-Ft was cleared slowly from cell surfaces and that it was not recycled to the surface. Cells labeled with WGA-Ft for 15 min at room temperature were washed and incubated in medium containing HRP for 15 or 30 min at 37 degrees C. The greatest proportion of labeled vesicles and tubules contained only WGA-Ft (83.4% at 15 min and 85.3% at 30 min). A very small fraction of labeled vesicles and tubules contained only HRP (0.2% at 15 min and 0.9% at 30 min). Vesicles and tubules at the Golgi apparatus were labeled almost exclusively with WGA-Ft (97% at 15 min and 30 min); the rest had both labels. Most labeled lysosomes contained both labels (80.1% at 15 min and 80.8% at 30 min). Of the remainder more contained WGA-Ft alone (20% at 15 min and 10.9% at 30 min), then HRP alone (none at 15 min and 8.2% at 30 min). In contrast to the various and varying patterns of labeling with WGA-Ft and HRP of the other organelles studied, the vast majority of endosomes contained both markers (94.1% at 15 min and 100% at 30 min); the rest contained WGA-Ft only. These results demonstrate that endosomes are recipients of both fluid phase and adsorptive endocytosis markers; these findings are consistent with the hypothesis that endosomes mediate the sorting out and subsequent intracellular traffic of membrane bound and fluid phase markers. Cisterns of the Golgi apparatus did not contain WGA-Ft; in sharp contrast, when WGA-HRP was used, the cisterns of the Golgi apparatus consistently contained HRP.  相似文献   

4.
Incubation of animal cells with hypertonic sucrose and polyethylene glycol (PEG) 1,000 renders endosomes sensitive in situ to hypotonic shock (Okada and Rechsteiner, 1982). We found that: 1) in vitro endosomes were osmotically insensitive; and 2) hypertonic sucrose inhibited transport from very early endosomes to lysosomes. Endocytic vesicles were labeled by incubating Chinese hamster ovary (CHO) cells for 1-10 min at 37 degrees C with horseradish peroxidase (HRP) and/or fluorescein isothiocyanate-conjugated dextran (FITC-dextran). Cell fractions prepared in 0.25 M sucrose were hypotonically shocked by dilution with 5 mM Na phosphate buffer, pH 6.7, to a final sucrose concentration of 0.05 M. After hypotonic shock, endocytized HRP and FITC-dextran pelleted with membrane while lysosomal hydrolases did not. The HRP activity in the pellet was latent, suggesting that endosomes were resistant to osmotic shock. Uptake in the presence of hypertonic sucrose had little effect on the subsequent osmotic sensitivity of the endosomes. Uptake in the presence of hypertonic sucrose and PEG 1,000 rendered endosomes fragile to cell homogenization. Unexpectedly, the inclusion of hypertonic sucrose in the uptake and chase media inhibited the appearance of HRP in lysosomes. HRP internalized during a 10-min uptake appeared as if it were present in two physically distinct compartments, one accessible to transport inhibition by exogenous sucrose ("very early" endosomes) and the other not ("early" endosomes). After a brief uptake (1-3 min), postincubation of CHO cells in 0.25 M sucrose-containing media completely blocked transport of internalized HRP to lysosomes. This blockage could be partially relieved by cointernalization of invertase with HRP. These results suggest that transport between multiple early endosome populations is sensitive to intraorganellar osmotic conditions.  相似文献   

5.
Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D1, was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane on self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label in secondary lysosomes increased by first order kinetics (k = [56 min]-1) from less than 0.1% (background level) to a steady-state level of approximately 2.5% of the total label. As analyzed by NaDodSO4 PAGE, labeled molecules of Mr 160-190 kD were depleted and of Mr 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all Mr classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constituents to secondary lysosomes is a limited and selective process, and that only approximately 1% of internalized membrane is recycled via a membrane pool of secondary lysosomes.  相似文献   

6.
To examine whether and how internalized plasma membrane components are routed to the compartment of the biosynthetic-exocytic pathway in cultured atrial myocytes, the plasma membrane labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was traced electron microscopically by cytochemical detection of HRP. The WGA-HRP label was internalized via a coated pit-small vesicle pathway and reached vacuoles and endosomes by 3 min. Labeled endosomes comprised vacuoles and tubular elements containing reaction product. By 15 min, similar tubular structures containing reaction product accumulated in the area of the trans-Golgi network (TGN). The labeled TGN consisted of interconnected tubular elements, which often connected to atrial granules containing reaction product. In contrast, neither native HRP nor Lucifer Yellow reached Golgi elements or atrial granules. These results suggest that a proportion of the plasma membrane labeled with WGA-HRP is delivered to endosomes, from which tubules might bud off to transfer the tracer molecules to the TGN, where the lectin conjugate and associated membranes are packaged into atrial granules.  相似文献   

7.
Endocytosed proteins are sorted in early endosomes to be recycled to the plasma membrane or transported further into the degradative pathway. We studied the role of endosomes acidification on the endocytic trafficking of the transferrin receptor (TfR) as a representative for the recycling pathway, the cation-dependent mannose 6-phosphate receptor (MPR) as a prototype for transport to late endosomes, and fluid-phase endocytosed HRP as a marker for transport to lysosomes. Toward this purpose, bafilomycin A1 (Baf), a specific inhibitor of the vacuolar proton pump, was used to inhibit acidification of the vacuolar system. Microspectrofluorometric measurement of the pH of fluorescein-rhodamine-conjugated transferrin (Tf)-containing endocytic compartments in living cells revealed elevated endosomal pH values (pH > 7.0) within 2 min after addition of Baf. Although recycling of endocytosed Tf to the plasma membrane continued in the presence of Baf, recycled Tf did not dissociate from its receptor, indicating failure of Fe3+ release due to a neutral endosomal pH. In the presence of Baf, the rates of internalization and recycling of Tf were reduced by a factor of 1.40 +/- 0.08 and 1.57 +/- 0.25, respectively. Consequently, little if any in TfR expression at the cell surface was measured during Baf treatment. Sorting between endocytosed TfR and MPR was analyzed by the HRP-catalyzed 3,3'- diaminobenzidine cross-linking technique, using transferrin conjugated to HRP to label the endocytic pathway of the TfR. In the absence of Baf, endocytosed surface 125I-labeled MPR was sorted from the TfR pathway starting at 10 min after uptake, reaching a plateau of 40% after 45 min. In the presence of Baf, sorting was initiated after 20 min of uptake, reaching approximately 40% after 60 min. Transport of fluid-phase endocytosed HRP to late endosomes and lysosomes was measured using cell fractionation and immunogold electron microscopy. Baf did not interfere with transport of HRP to MPR-labeled late endosomes, but nearly completely abrogated transport to cathepsin D- labeled lysosomes. From these results, we conclude that trafficking through early and late endosomes, but not to lysosomes, continued upon inactivation of the vacuolar proton pump.  相似文献   

8.
Horseradish peroxidase (HRP), an enzyme internalized by fluid phase pinocytosis, has been used to study the process by which pinosome contents are delivered to lysosomes in Chinese hamster ovary cells. Pinosome contents were labeled by allowing cells to internalize HRP for 3-5 min. Following various chase times, cells were either processed for HRP and acid phosphatase (AcPase) cytochemistry or homogenized and fractionated in Percoll gradients. In Percoll gradients, pinosomes labeled by a 3-5 min HRP pulse behaved as a vesicle population more dense than plasma membrane and less dense than lysosomes. In pulse- chase experiments, internalized HRP was chased rapidly (3-6 min chase) to a density position intermediate between the "initial" pinocytic vesicle population and lysosomes. With longer chase periods, a progressive accumulation of HRP in more dense vesicles was observed. Correspondence between the HRP distribution and lysosomal marker distribution was reached after a approximately 1-h chase. By electron microscope cytochemistry of intact cells, the predominant class of HRP- positive vesicles after pulse uptakes or a 3-min chase period was characterized by a peripheral rim of reaction product and was AcPase negative. After 10-120-min chase periods, the predominant class of HRP- positive vesicles was characterized by luminal deposits and HRP activity was frequently observed in multivesicular bodies. HRP-positive vesicles after a 10- or 30-min chase were AcPase-positive. No HRP activity was detected in Golgi apparatus. Together these observations indicate that progressive processing of vesicular components of the vacuolar apparatus occurs at both a prelysosomal and lysosomal stage.  相似文献   

9.
Endosome-lysosome fusion at low temperature   总被引:5,自引:0,他引:5  
Based on an initial study (Dunn, W. A., Hubbard, A. L., and Aronson, Jr., N. N. (1980) J. Biol. Chem. 255, 5971-5978), low temperature is often used to selectively inhibit fusion between endosomes and lysosomes. Here we have tried to characterize the nature of this inhibition. In addition to endocytic contents markers, we have used a covalent membrane marker to measure the interaction between endosomes and lysosomes over extended periods of time at low temperature. Mouse macrophage cells (P388D1) and human skin fibroblasts were enzymatically labeled with radioactive galactose to provide a covalent marker for plasma-membrane glycoconjugates. Subsequent endocytic membrane traffic for 24 h at 16 degrees C resulted in a significant transfer of membrane marker, as well as of endocytic contents marker, to high density lysosomes, as observed by subcellular fractionation. The kinetics of this transfer have been analyzed for macrophages using the membrane marker, horseradish peroxidase as fluid-phase, and iodinated acetyl low density lipoprotein as receptor-mediated endocytic contents marker. Transfer to lysosomes occurred only about 6 h after application of the respective marker at 16 degrees C. When transfer to lysosomes was initiated by 15 min preincubation at 37 degrees C, subsequent cooling to 16 degrees C did not inhibit ongoing transfer which continued with the same kinetics as when observed after the lag phase. These results show that low temperature delays an unidentified pre-fusion step, but does not inhibit endosome-lysosome fusion as such.  相似文献   

10.
Summary The uptake and pathway of different markers and ligands for fluid-phase, adsorptive and receptor mediated endocytosis were analyzed in the epithelial cells lining the rete testis after their infusion into the lumen of these anastomotic channels. At 2 min after injection, diferric transferrin bound to colloidal gold was seen attached to the apical plasma membrane and to the membrane of endocytic coated and uncoated pits and vesicles. The injection of transferrin-gold in the presence of a 100-fold excess of unconjugated diferric transferrin revealed no binding or internalization of transferrin-gold. Similarly, apotransferrin-gold was neither bound to the apical plasma membrane nor internalized by these cells. These results thus indicate the presence of specific binding sites for diferric transferrin. At 5 min, internalized diferric transferrin-gold reached endosomes. At 15 and 30 min, the endosomes were still labeled but at these time intervals the transferrin-gold also appeared in tubular elements connected to or associated with these bodies or seen in close proximity to the apical plasma membrane. At 60 and 90 min, most of the transferrin-gold was no longer present in these organelles and was seen only exceptionally in secondary lysosomes. These results thus suggest that the tubular elements may be involved in the recycling of transferrin back to the lumen of the rete testis. The coinjection of transferrin-gold and the fluid-phase marker native ferritin revealed that both proteins were often internalized in the same endocytic pit and vesicle and shared the same endosome. However, unlike transferrin, native ferritin at the late time intervals appeared in dense multivesicular bodies and secondary lysosomes. When the adsorptive marker cationic ferritin and the fluid-phase marker albumin-gold were coinjected, again both proteins often shared the same endocytic pit and vesicle, endosome, pale and dense multivesicular body and secondary lysosomes. However, several endocytic vesicles labeled only with cationic ferritin appeared to bypass the endosomal and lysosomal compartments and to reach the lateral intercellular space and areas of the basement membrane. The rete epithelial cells, therefore, appear to be internalizing proteins and ligands by receptor-mediated and non-specific endocytosis which, after having shared the same endocytic vesicle and endosome, appear to be capable of being segregated and routed to different destinations.  相似文献   

11.
Endocytosis in filter-grown Madin-Darby canine kidney cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1989,109(6):3243-3258
In this paper, we have characterized the apical and basolateral endocytic pathways of epithelial MDCK cells grown on filters. The three- dimensional organization of the endocytic compartments was analyzed by confocal microscopy after internalization of a fluorescent fluid-phase marker from either side of the cell layer. After 5 min of internalization, distinct sets of apical and basolateral early endosomes were observed lining the plasma membrane domain from which internalization had occurred. At later time points, the apical and the basolateral endocytic pathways were shown to converge in the perinuclear region. Mixing of two different fluorescent markers could be detected after their simultaneous internalization from opposite sides of the cell layer. The extent of the meeting was quantitated by measuring the amount of complex formed intracellularly between avidin internalized from the apical side and biotinylated horseradish peroxidase (HRP) from the basolateral side. After 15 min, 14% of the avidin marker was complexed with the biotinylated HRP and this value increased to 50% during a subsequent chase of 60 min in avidin-free medium. We also determined the kinetics of fluid internalization, recycling, transcytosis, and intracellular retention using HRP as a marker. Fluid was internalized with the same rates from either surface domain (1.2 x 10(-4) microns 3/min per microns 2 of surface area). However, significant differences were observed for each pathway in the amounts and kinetics of marker recycled and transcytosed. The content of apical early endosomes was primarily recycled and transcytosed (45% along Bach route after 1 h internalization), whereas delivery to late endocytic compartments was favored from the basolateral early endosome (77% after 1 h). Our results demonstrate that early apical and basolateral endosomes are functionally and topologically distinct, but that the endocytic pathways converge at later stages in the perinuclear region of the cell.  相似文献   

12.
郝振华  李巍 《生命科学》2010,(11):1138-1146
哺乳动物细胞中,内吞作用通过质膜内陷形成囊泡来摄取外界物质,经早内体到达晚内体/溶酶体降解或经再生循环回到质膜。内体运输网络参与细胞一系列重要生命活动,如信号通路调节、细胞器发生以及胞吐作用等。近年来发现Aps、BLOCs、HOPS和ESCRTs等复合体共同参与货物由胞内体到溶酶体或溶酶体相关细胞器的运送。该文主要就这些内体—溶酶体运输系统中重要蛋白复合体的组成和功能进行综述。  相似文献   

13.
Involvement of endosomes in transport of newly synthesized acid phosphatase to lysosomes was investigated using the Golgi fraction (GF1 + 2), enriched in endosomes. The Golgi fraction (GF1 + 2) was prepared from the livers of rats given [35S]methionine and asialofetuin conjugated-horseradish peroxidase (HRP). Newly synthesized acid phosphatase in the endosomes containing internalized asialofetuin-HRP was measured as a loss of the detectable labeled enzyme after 3,3'-diaminobenzidine (DAB) and H2O2 reaction, due to formation of insoluble polymers which reduce protein antigenicity. With this procedure, acid phosphatase was all but undetectable in the Golgi fraction. Thus, newly synthesized acid phosphatase is apparently transported to lysosomes by endosomes.  相似文献   

14.
We investigated the effects of reduced temperature, the pH elevators NH4Cl, monensin, and HEPES (N-2-hydroxy-ethylpiperazine-N'-2-ethanesulfonic acid) buffer, as well as the metabolic poisons NaF/KCN on transport of the fluid phase pinocytic marker, horseradish peroxidase (HRP), to lysosomes in Chinese hamster ovary (CHO) cells. In cell fractionation experiments, these agents appeared to block HRP transit at specific point(s) from "early" to "late" (i.e., low to high density) prelysosomal vesicles and lysosomes. Reduced temperature (17 degrees C) most strongly inhibited HRP transport from low density, early endosomes to lysosomes. In long-term HRP uptakes at 17 degrees C, marked peroxidase accumulation occurred both in early endosomes and in lysosomes. Loss (reversible pinocytosis) of HRP from "very early" endosomes occurred at 17 degrees C. All three pH elevators including the common media supplement HEPES buffer inhibited transit of internalized HRP into lysosomes. For all three pH elevators, inhibition was most pronounced at the "early" endosome stage. The respiratory inhibitors NaF/KCN also inhibited transport most strongly at the early endosome stage. Together these results suggest that "early" steps in the endocytic transport of HRP are the most sensitive and that the conditions tested may exert direct effects on the processing of endocytic vesicles.  相似文献   

15.
The distribution of a number of membrane proteins on plasmalemmal microdomains (microvilli, coated pits) and in endosomes and lysosomes of the proximal tubule epithelial cell was determined in normal rat kidneys by immunofluorescence and immunoelectron microscopy. Two major brush border proteins, 130 and 94 kD, and gamma-glutamyl transpeptidase were detected on the membranes of the microvilli but were not found on membranes of coated pits. Gp330, the Heymann nephritis antigen, and clathrin were localized in coated pits. The lysosomal membrane glycoprotein, lgp120 (Lewis, V., S. A. Green, M. Marsh, P. Vihko, A. Helenius, and I. Mellman, 1985, J. Cell Biol., 100: 1839-1847) was restricted to lysosomes where it co-localized with beta-glucuronidase. Endosomes, identified by preloading with HRP injected 5-15 min before rats were killed, did not contain detectable amounts of any antigen tested. The distribution of the same proteins was also determined in rats given sodium maleate, which is known to slow or reduce protein absorption by the proximal tubule and to cause vacuolation of the endocytic apparatus. After maleate treatment the distribution of microvillar and lysosomal markers was unchanged, but the coated pit markers were redistributed--gp330 was concentrated in newly formed apical vacuoles, and clathrin was diffusely distributed in the apical cytoplasm or on apical coated vesicles. These findings indicate that the membrane composition of microvilli, coated pits, endosomes, and lysosomes is distinctive in the proximal tubule cell; and that gp330, unlike other known coated pit membrane components, is not transferred to endosomes during endocytosis. After maleate treatment, the coated pits lose their clathrin coats, and the corresponding membrane is internalized.  相似文献   

16.
Marker enzymes in rat liver vesicles involved in transcellular transport   总被引:4,自引:0,他引:4  
In order to label the vesicles involved in transcellular transfer (transcytosis) through hepatocytes, polymeric IgA (pIgA) was conjugated to horseradish peroxidase (HRP) and injected into rats. The endosomes containing this ligand at 10 or 20 min after injection were isolated by the diaminobenzidine-induced density-shift procedure and their content in various marker enzymes was measured. The endosomes carrying pIgA-HRP 10 min after injection contained only traces of 5'-nucleotidase and low amounts of alkaline phosphodiesterase I. The estimated marker enzyme content is similar to that observed for the particles containing galactosylated bovine serum albumin conjugated to HRP, a ligand degraded in lysosomes. However, 20 min after injection, the transcytotic endosomes showed a marked enrichment in 5'-nucleotidase and especially in alkaline phosphodiesterase I. The results confirm the heterogeneity of rat liver endosomes and substantiate the concept of distinct endosomal compartments.  相似文献   

17.
Non-enveloped picornavirus echovirus 1 (EV1) clusters its receptor α2β1 integrin and causes their internalization and accumulation in α2β1 integrin enriched multivesicular bodies (α2-MVBs). Our results here show that these α2-MVBs are distinct from acidic late endosomes/lysosomes by several criteria: (i) live intra-endosomal pH measurements show that α2-MVBs are not acidic, (ii) they are not positive for the late endosomal marker LBPA or Dil-LDL internalized to lysosomes, and (iii) simultaneous stimulation of epidermal growth factor receptor (EGFR) and α2β1 integrin clustering leads to their accumulation in separate endosomes. EGFR showed downregulation between 15 min and 2 h, whereas accumulation of α2β1 integrin/EV1 led to an increase of integrin fluorescence in cytoplasmic vesicles further suggesting that EV1 pathway is separate from the lysosomal downregulation pathway. In addition, the results demonstrate the involvement of ESCRTs in the biogenesis of α2-MVBs. Overexpression of dominant-negative form of VPS4 inhibited biogenesis of α2-MVBs and efficiently prevented EV1 infection. Furthermore, α2-MVBs were positive for some members of ESCRTs such as Hrs, VPS37A and VPS24 and the siRNA treatment of TSG101, VPS37A and VPS24 inhibited EV1 infection. Our results show that the non-enveloped EV1 depends on biogenesis of novel multivesicular structures for successful infection.  相似文献   

18.
Lactoperoxidase-mediated iodination at 4 degrees C--an established method for covalent labelling of plasma membrane proteins--and quantitative electron microscopic autoradiography were used to follow the pathways of endocytosis in mouse macrophages in vitro. Directly after the labelling, the autoradiographic grains were concentrated to the cell surface. After warming to 37 degrees C, radioactive material was rapidly internalized into cytoplasmic vesicles and subsequently transferred to lysosomes as well as to the Golgi complex. Maximum grain density (% grains/% volume) over the vesicles was observed after 15 min, over the lysosomes after 30 to 45 min and over the Golgi complex after 30 and 90 min. Throughout the experimental period (120 min), the vesicles showed the largest fraction of intracellular grains, but higher grain densities occurred in lysosomes as well as in stacked Golgi cisternae and Golgi-associated vesicles. In spite of the internalization process, the labelling of the cell surface came to a steady state already after 30 min and at all intervals more than 50% of the autoradiographic grains were localized to this compartment. About 25% of the cell-associated radioactivity was lost rapidly with a half-life of 20 to 25 min and the remaining 75% slowly with a half-life of 7 to 9 h. The results indicate that membrane internalized by endocytosis partly follows a route to the lysosomes and that, additionally, there exists a route to and through the Golgi complex. They further support earlier notions of a bidirectional traffic between the surface and interior of the cell and suggest that recycling of membrane components may take place from endocytic vesicles, lysosomes, as well as the Golgi complex.  相似文献   

19.
Receptor-mediated endocytosis of transferrin by Sertoli cells of the rat   总被引:1,自引:0,他引:1  
Binding of 125I-transferrin (125I-Tf) to the plasma membrane of Sertoli cells and its endocytosis were analyzed by means of light- and electron-microscope quantitative radioautography. Five minutes after 125I-Tf was injected into the interstitial space of the testis, a strong labeling of the basal aspect of the seminiferous epithelium was observed in light-microscope radioautographs. Injection of the same dose of 125I-Tf plus a 200-fold excess of cold transferrin resulted in a marked diminution of the radioautographic reaction, indicating that the initial strong labeling with radiolabeled transferrin was specific. These results were consistent with the localization of immunoreactive fluorescence of transferrin receptor at the base of the seminiferous epithelium. In electron-microscope radioautographs of tubules collected at 5 min after injection, the membrane of Sertoli cells facing the basement membrane was well labeled with 125I-Tf. At 15 and 30 min, the plasma membrane was less intensely labeled, but the silver grains were then seen overlying multivesicular bodies with an electron-lucent matrix, identified as endosomes. This population of endosomes was always seen at a short distance from the basal membrane of Sertoli cells. At 90 min, no more labeling of the plasma membrane, endosomes, or any other cytoplasmic component was observed. Isolated seminiferous tubules and Sertoli cells labeled with 125I-Tf at 4 degrees C were rinsed and reincubated in a label-free medium at 37 degrees C for various periods of time from 5 to 90 min. A radioactive protein precipitated by trichloroacetic acid, presumably intact transferrin, was released from the tubules into the incubating medium; when measured, it was found to increase rapidly from 5 to 45 min and stabilize thereafter. These results suggest that transferrin was internalized by receptor-mediated endocytosis, reached endosomes, and then was released to the extratubular space. When native ferritin (NF), a tracer for fluid-phase endocytosis, was infused within the lumen of seminiferous tubules and 125I-Tf was simultaneously injected into the interstitial space, both markers rapidly reached different populations of endosomes. Endosomes labeled with NF, scattered throughout the cytoplasm, evolved with time into dense multivesicular bodies and secondary lysosomes, whereas radiolabeled transferrin reached only the endosomes located in the basal cytoplasm of Sertoli cells. The latter thus appeared to be principally involved in the uptake and recycling of transferrin.  相似文献   

20.
LIM kinase (LIMK) plays a critical role in stimulus-induced remodeling of the actin cytoskeleton by linking signals from the Rho family GTPases to changes in cofilin activity. Recent studies have shown an important role for LIMK1 signaling in tumor cell invasion through regulating actin dynamics. In this study, we investigate the role of LIMK1 in intracellular vesicle trafficking of lysosomes/endosomes. We analyzed by confocal immunofluorescence microscopy the cellular distribution of lysosomal proteins and the endocytosis of an endocytic tracer, epidermal growth factor (EGF), in LIMK1-transfected cells. We found in these cells an abnormal dispersed translocation of lysosomes stained for LIMPII and cathepsin D throughout the cytoplasm. The small punctate structures that stained for these lysosomal proteins were redistributed to the periphery of the cell. Computational 3D-image analysis of confocal immunofluorescence micrographs further demonstrated that these vesicles did not colocalize with the transferrin receptor, an early endosomal marker. Furthermore, LIMPII-positive lysosomes did not colocalize with early endosomes labeled with endocytosed Texas red-transferrin. These results indicate that there is no mixing between dispersed lysosomes and early endosomes in the LIMK1-transfected cells. Moreover, LIMK1 overexpression resulted in a marked retardation in the receptor-mediated internalization of Texas red-labeled EGF in comparison with mock-transfected cells. At 30 min after internalization, most of the Texas red-EGF staining overlapped with LIMPII-positive late endosomes/lysosomes in mock-transfected cells, whereas in LIMK1 transfectants only a small fraction of internalized EGF colocalized with LIMPII-positive structures in the perinuclear region. Taken together, the findings presented in this paper suggest that LIMK1 has a role in regulating vesicle trafficking of lysosomes and endosomes in invasive tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号