首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Industrial glycerol obtained through the transesterification process using rapeseed oil did not support growth of several strains ofClostridium butyricum obtained from bacterial culture collections. Ten new strains ofC. butyricum were obtained from mud samples from a river, a stagnant pond, and a dry canal. These new isolates fermented the commercial glycerol and produced 1,3-propanediol as a major fermentation product with concomitant production of acetic and butyric acids. Four of the ten isolates were able to grow on industrial glycerol obtained from rapeseed oil. One strain,C. butyricum E5, was very resistant to high levels of glycerol and 1,3-propanediol. Using fed-batch fermentation, 109 g L–1 of industrial glycerol were converted into 58 g of 1,3-propanediol, 2.2 g of acetate and 6.1 g of butyrate per liter.  相似文献   

2.
D. Kaplan  A. M. Mayer  S. H. Lips 《Planta》1978,138(3):205-209
Comparative studies of nitrate-activated nitrate reductase (NR-NO2) and nitrate-induced nitrate reductase (NR-NO3) (EC 1.6.6.2) indicate that the enzymes differ in structure, heat stability, and pH dependence, but have the same cofactor requirment. NR-NO2 developes in barley (Hordeum vulgare L. var. Dvir) seedlings as NR-NO3 disappears. A transition from the active to the inactive form of nitrate reductase takes place. Nitrite seems to activate the inactive form of the enzyme.  相似文献   

3.
NADH:nitrate reductase (EC 1.6.6.1) from squash (Cucurbita maxima Duch., cv. Buttercup) can catalyze the reduction of a ferriphytosiderophore from barley (Hordeum vulgare L. cv. Europa). Maximal activity occurs at pH 6, with an apparentK m andV max of 76 M and 21 nmol·min-1·(mg protein)-1, respectively. The ferriphytosiderophore strongly inhibits nitrate reduction catalyzed by nitrate reductase at the optimal pH for nitrate reduction, i.e. 7.5. On the contrary, nitrate is a poor inhibitor of ferriphytosiderophore reduction catalyzed by nitrate reductase at the optimal pH for this reaction, pH 6.0. Thus, squash has the potential to assimilate the iron from a ferriphytosiderophore synthesized by another plant.  相似文献   

4.
Preparation of a nitrate reductase lysate of Escherichia coli MC1061 to measure nitrate and nitrite in biologic fluids is described. To obtain the crude bacterial lysate containing nitrate reductase activity, E. coli MC1061 was subjected to 16-20 freeze-thawing cycles, from -70 to 60 degrees C, until nitrite reductase activity was < or = 25%. Nitrate reductase activity was detected mainly in the crude preparation. To validate the nitrate reduction procedure, standard nitrate solutions (1.6-100 microM) were incubated with the nitrate reductase preparation for 3 h at 37 degrees C, and nitrite was estimated by the Griess reaction in a microassay. Nitrate solutions were reduced to nitrite in a range of 60-70%. Importantly, no cofactors were necessary to perform nitrate reduction. The biological samples were first reduced with the nitrate reductase preparation. After centrifugation, samples were deproteinized with either methanol/ether or zinc sulfate and nitrite was quantified. The utility of the nitrate reductase preparation was assessed by nitrate+nitrite determination in serum of animals infected with the protozoan Entamoeba histolytica or the bacteria E. coli and in the supernatant of cultured lipopolysaccharide-stimulated RAW 264.7 mouse macrophages. Our results indicate that the nitrate reductase-containing lysate provides a convenient tool for the reduction of nitrate to determine nitrate+nitrite in biological fluids by spectrophotometric methods.  相似文献   

5.
Nitrate reduction in vivo by spinach leaf discs was shown to be inhibited by hydroxylamine when this was included in the nitrate reductase assay solutions or introduced to the tissue during a preincubation period. The sensitivity of nitrate reduction to hydroxylamine was not sufficient to suggest a natural process, considering the small endogenous concentrations of hydroxylamine in the leaves. Inhibition of nitrate reduction in vivo could be approximately related to rates of in vitro inhibition of nitrate reductase by this compound. There was no need to suppose conversion of hydroxylamine to cyanide to inhibit nitrate reduction. Some of the in vivo and in vitro characteristics of hydroxylamine inhibition of nitrate reductase are described. Hydroxylamine was metabolised by discs at rates comparable to nitrate reduction. Rates of metabolism of hydroxylamine, and its accumulation in the tissues from an external solution were both enhanced by light but little affected by anaerobiosis.Abbreviations NR nitrate reductase  相似文献   

6.
7.
Various methods suited for the measurement of nitrate require its reduction to nitrite by cadmium under acidic or alkaline conditions. NG-Nitroarginine analogs have been shown to interfere with the measurement of nitrate by such assays. In the present work we show by gas chromatography−mass spectrometry that under alkaline reduction conditions the S-nitroso compounds S-nitrosoglutathione and S-nitrosohomocysteine but not S-nitroso-N-acetylcysteine and S-nitroso-N-acetylpenicillamine can considerably contribute to nitrate and thus interfere with its measurement. Our results suggest that S-nitroso compounds may interfere with the measurement of nitrate in methods requiring cadmium-catalyzed reduction of nitrate to nitrite.  相似文献   

8.
Light inhibited each step of the denitrification process in whole cells of Rhodobacter sphaeroides forma sp. denitrificans. This inhibition by light was prevented in the presence of exogenous electron donors like N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) plus ascorbate or in the presence of an uncoupler (carbonyl cyanide m-chlorophenylhydrazone). Addition of myxothiazol restored the inhibition by light in uncoupled cells. Measurements of light-induced absorbance changes under these conditions showed that this inhibition is due, for the steps of reduction of nitrite to dinitrogen, to the photooxidation of cytochromes c 1 plus c 2 and not due to the photoinduced membrane potential. Moreover, the presence of oxygen inhibited almost all of the reduction of nitrate and nitrous oxide but only 70% of the reduction of nitrite to nitrous oxide. These inhibitions were overcome in the presence of TMPD plus ascorbate. This implies that the inhibition in presence of oxygen was due to a diversion of the reducing power from the denitrifying chain to the respiratory chain. It was concluded from this series of experiments that the reduction of nitrate to nitrite is inhibited when the ubiquinone pool is partly oxidized and that nitrite and nitrous oxide reductions are inhibited when cytochromes c 1 plus c 2 are oxidized by photosynthesis or respiration.Abbreviations R Rhodobacter - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - HOQNO 2-n-heptyl-4-hydroxyquinoline N-oxide - CCCP carbonyl cyanide m-chlorophenylhydrazone - cytochrome c 1 cytochrome c 2 plus cytochrome c 1  相似文献   

9.
10.
Maize (Zea mays L.) grown on low (0.8 mM) NO 3 - , as well as untransformed and transformed Nicotiana plumbaginifolia constitutively expressing nitrate reductase (NR), was used to study the effects of NO 3 - on the NR activation state. The NR activation state was determined from the relationship of total activity extracted in the presence of ethylenediaminetetracetic acid to that extracted in the presence of Mg2+. Light activation was observed in both maize and tobacco leaves. In the tobacco lines, NO 3 - did not influence the NR activation state. In excised maize leaves, no correlation was found between the foliar NO 3 - content and the NR activation state. Similarly, the NR activation state did not respond to NO 3 - . Since the NR activation state determined from the degree of Mg2+-induced inhibition of NR activity is considered to reflect the phosphorylation state of the NR protein, the protein phosphatase inhibitor microcystin LR was used to test the importance of protein phosphorylation in the NO 3 - -induced changes in NR activity. In-vivo inhibition of endogenous protein phosphatase activity by microcystin-LR decreased the level of NR activation in the light. This occurred to the same extent in the presence or absence of exogenous NO 3 - . We conclude that NO 3 - does not effect the NR activation state, as modulated by protein phosphorylation in either tobacco (a C3 species) or maize (a C4 species). The short-term regulation of NR therefore differs from the NO 3 - -mediated responses observed for phosphoenolpyruvate carboxylase and sucrose phosphate synthase.Abbreviations Chl chlorophyll - MC microcystin-LR - PEP-Case phosphoenolpyruvate carboxylase - SPS sucrose-phosphate synthase We are indebted to Madeleine Provot and Nathalie Hayes for excellent technical assistance. This work was funded by EEC Biotechnology Contract No. BI02 CT93 0400, project of technical priority, Network D — Nitrogen Utilisation and Efficiency.  相似文献   

11.
Summary We investigated the inducibility of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), and glutamine synthetase (GS; EC 6.3.1.2) isoforms in cotyledons of 7-day-old seedlings of sunflower (Helianthus annuus L.) in relation to light, nitrogen source (NO 3 , NO 2 or NH 4 + ), and the involvement of plastids. Nitrate was absolutely (and specifically) required for NR induction, and stimulated more effectively than NO 2 or NH 4 + the synthesis of NiR and chloroplastic GS (GS2) over the constitutive levels present in N-free-grown seedlings. In vivo inhibition of NR activity by tungsten application to seedlings and measurements of tissue NO 3 concentration indicate that NO 3 -dependent enzyme induction is elicited by NO 3 per se and not by a product of its assimilatory reduction, e.g., NO 2 or NH 4 + . In the presence of NO 3 , light remarkably enhanced the appearance of NR, NiR, and GS2, while the activity of the cytosolic GS isoform (GS1) was adversely affected. Cycloheximide suppressed much more efficiently than chloramphenicol the light- and NO 3 -dependent increase of GS2 activity, indicating that sunflower chloroplastic GS is synthesized on cytoplasmic 80S ribosomes. When the plastids were damaged by photooxidation in cotyledons made carotenoid-free by application of norflurazon, the positive action of light and NO 3 on the appearance of NR, NiR, and GS2 isoform was greatly abolished. Therefore, it is suggested that intact chloroplasts are required for the inductive effect of light and NO 3 and/or for the accumulation of newly formed enzymes in the organelle.Abbreviations CAP chloramphenicol - CHX cycloheximide - GS glutamine synthetase - GS1 cytosolic GS - GS2 plastidic (chloroplastic) GS - NF norflurazon - NiR nitrite reductase - NR nitrate reductase  相似文献   

12.
The growth of Pseudomonas denitrificans ATCC 13867 under denitrifying conditions was significantly stimulated by adding an appropriate amount of formate (2.5 mM or above) to the growth medium. The accumulation of nitrite in the culture was markedly depressed so long as formate remained in the culture above a certain level. Cellular activities of enzymes participating in denitrification also changed. The cells grown in the presence of formate exhibited a lower nitrate reductase activity and, in contrast, a higher nitrite reductase activity than the cells grown without added formate.  相似文献   

13.
V. K. Rajasekhar  H. Mohr 《Planta》1986,168(3):369-376
Nitrite reductase (NIR; EC 1.7.7.1) is a central enzyme in nitrate assimilation and is localized in plastids. The present study concerns the regulation of the appearance of NIR in cotyledons of the mustard (Sinapis alba L.) seedling. It was shown that light exerts its positive control over the nitrate-mediated induction of NIR via the farred-absorbing form of phytochrome. Without nitrate the light effect cannot express itself; even though the light signal is accumulated in the cotyledons it remains totally cryptic in the absence of nitrate. Moreover, it was recognised that intact plastids are important in the control of the appearance of NIR. If the plastids are damaged by photooxidation the action of nitrate and phytochrome on NIR appearance is abolished. The appearance of nitrate reductase (NR; EC 1.6.6.1) responds similarly to photooxidative damage even though this enzyme is cytosolic. While the data strongly indicate that some plastidic signal is a prerequisite for the nitrate-induced and phytochrome-modulated appearance of NIR and NR, the possibility could not be ruled out that photooxidative damage affects the accumulation of NIR in the organelle.Abbreviations c continuous - D darkness - FR far-red light - NADP-GPD NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.1.13) - NF Norflurazon - NIR nitrite reductase (EC 1.7.7.1.) - NR nitrate reductase (EC 1.6.6.1) - Pfr phytochrome (far-red light obtained with RG9 glass filter - R red light - RG9-light long wavelenght far-red light obtained with RG9 glass filter - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - WL white light - WLs strong white light (28 W m-2)  相似文献   

14.
The hypothesis of NO 2 toxicity as the causative factor of NO 3 inhibition of nitrogenase (N2ase; EC 1.18.6.1) activity has been evaluated using a short-term exposure (3 d) of several legumes. Treatment of plants with 10 mM NO 3 induced nitrate reductase (NR) from bacteroids (EC 1.7.99.4) and nodule cytosol (EC 1.6.6.1) in most species. Regardless of the levels of both enzymes, significant accumulation of NO 2 did not occur in nodules. Dissection of nodules into cortical and infected regions, and subsequent NO 2 assays in conditions that suppressed enzyme activities, indicated that, in the short-term, bacteroid NR does not generate NO 2 in vivo. This is probably because NO 3 access is restricted to the nodule cortex. Accumulation of NO 2 at levels that are damaging for N2ase and leghaemoglobin were only observed when a delay occurred between dissection and assaying of nodules. It is concluded that NO 2 is not responsible for the initial NO 3 -induced decline of N2ase activity, and that toxic amounts of NO 2 only build up in nodules following longer exposures to NO 3 , when this anion is actively reduced by bacteroid and cytosol enzymes.  相似文献   

15.
The possible source of NADH, the energy donor for nitrate reductase (EC 1.6.6.1), has been studied using an in vivo assay involving freezing the material (leaves of Spinacea oleracea L.) in liquid nitrogen in order to render the tissue permeable to added substrates. Glycolysis and the pentose phosphate pathway were capable of generating NADH through glyceraldehyde-3-phosphate dehydrogenase. Malate and isocitrate were also capable of generating NADH white other organic acids tested were not, including glycolate which was ineffective even under anaerobic conditions.  相似文献   

16.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   

17.
Control of nitrate reductase by circadian and diurnal rhythms in tomato   总被引:1,自引:0,他引:1  
Tucker DE  Allen DJ  Ort DR 《Planta》2004,219(2):277-285
  相似文献   

18.
19.
Improved production of butyrate (up to 19 g/l) from whey by Clostridium butyricum was achieved by adding either yeast extract (5 g/l) or biotin (50 g/l). Hydrolysed lactose and proteolysed whey were less effective even with added biotin.The authors are with the Department of Biochemical Technology, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, Bratislava 812 37, Slovakia  相似文献   

20.
Batch cultures of Chlorella fusca excreted nitrite into the medium if gassed with air (0.03% CO2), but they did not if supplied with air containing 5% CO2. After a change from high to low CO2 concentration in the gas stream, nitrite excretion started immediately. After an increase in CO2 concentration to 5%, nitrite uptake started within only 30 min. Changes of in-vitro activities of nitrate reductase, nitrite reductase and glutamine synthetase did not correspond to changes of nitrite concentration in the medium and therefore could not explain these observations. A nitrite-binding site, whose activity corresponded with both nitrite excretion and uptake, was detected at the chloroplast envelope. From these data an additional regulatory step in the assimilatory nitrate-reduction sequence is suggested. This includes an envelopeprotein fraction probably regulating the availability of nitrite within the chloroplast.Abbreviations FMN riboflavin 5-phosphate - GS glutamine synthetase - NIR nitrite reductase - NR nitrate reductase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号