首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
c-Abl and the Abl-related gene product (Arg) are nonreceptor tyrosine kinases that regulate the actin cytoskeleton of cells by direct association with F-actin and localization to focal contacts. However, the biological significance of this interaction is not known. We show here that transfection of COS-7 cells with a kinase-inactive form of c-Abl (Abl) promotes c-Crk II/p130(CAS) (Crk-CAS) coupling, enhancing cell migration. Moreover, embryonic fibroblast cells isolated from mice devoid of endogenous Abl and Arg (abl-/- arg-/-) demonstrate increased Crk-CAS coupling and motility. Conversely, expression of a kinase-active form of Abl or reconstitution of abl-/- arg-/- cells with wild-type Abl prevents Crk-CAS coupling and inhibits cell migration. Thus, Abl and Arg kinases play a critical role in preventing cell migration through regulation of Crk and CAS adaptor protein complexes, which are necessary for cell movement.  相似文献   

2.
Herein, we define how MEKK1, a MAPK kinase kinase, regulates cell migration. MEKK1 is associated with actin fibers and focal adhesions, localizing MEKK1 to sites critical in the control of cell adhesion and migration. EGF-induced ERK1/2 activation and chemotaxis are inhibited in MEKK1-/- fibroblasts. MEKK1 deficiency causes loss of vinculin in focal adhesions of migrating cells, increased cell adhesion and impeded rear-end detachment. MEKK1 is required for activation of the cysteine protease calpain and cleavage of spectrin and talin, proteins linking focal adhesions to the cytoskeleton. Inhibition of ERK1/2 or calpain, but not of JNK, mimics MEKK1 deficiency. Therefore, MEKK1 regulates calpain-mediated substratum release of migrating fibroblasts.  相似文献   

3.
With over 60 members, the Sterile 20 family of kinases has been implicated in numerous biological processes, including growth, survival, apoptosis and cell migration. Recently, we have shown that, in addition to cell death, the Ste20-like kinase SLK is required for efficient cell migration in fibroblasts. We have observed that SLK is involved in cell motility through its effect on actin reorganization and microtubule-induced focal adhesion turnover. Scratch wounding of confluent monolayers results in SLK activation. The induction of SLK kinase activity requires the scaffold function of FAK and a MAPK-dependent pathway. However, its recruitment to the leading edge of migrating fibroblasts requires the activity of the Src family kinases. Since SLK is microtubule-associated, it may represent one of the signals delivered to focal contacts that induces adhesions turnover. A speculative model is proposed to illustrate the mechanism of SLK activation and recruitment at the leading edge of migrating cells.  相似文献   

4.
Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg-/- fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin-rich cell protrusions. Arg requires both its F-actin-binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg-/- fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts.  相似文献   

5.
The principles determining the migration of different cell types may result from their differences in origin, size and shape, function of adhesion receptors, and environmental factors, including the extracellular matrix. Polarized leukocytes (T lymphocytes and dendritic cells) migrating in three-dimensional collagen lattices are small developing a highly dynamic leading edge and a trailing uropod, whereas invasive melanoma cells are larger, highly polarized and less dynamic. In contrast to leukocytes, tumor cells may additionally develop migrating cell clusters maintaining intense cell-cell interaction and cluster polarity. Leukocytes show a speed-oriented, oscillating and directionally unpredictable path profile strongly guided by matrix fibers, while melanoma cells and migrating cell clusters exhibit slow yet highly directional migration. Whereas leukocytes form short-lived interactions with collagen fibers in complete absence of tissue remodeling, melanoma cells and neoplastic cell clusters reorganize the matrix via profound pulling at attachment sites, limited fiber disruption upon detachment, and the shedding of cell surface determinants. Using blocking anti-integrin antibodies, tumor cell migration and migration-associated matrix reorganization were shown to be dependent on β integrin-mediated adhesion, whereas migrating T cells cannot be inhibited by a panel of anti-β1-, β2-, β3-, and α-integrin antibodies, either alone or in combination. Consequently, migrating melanoma cells use focal adhesions of integrins coclustered with cytoskeletal components at contacts with collagen fibers. T cells, however, lack typical focal adhesions, redistribute β1 integrins to the uropod and the focal adhesion kinase to the leading edge. In conclusion, an adhesion-dependent and reorganizing migration type employed by melanoma cells may be distinct from largely integrinindependent and non-reorganizing migration strategies used by leukocytes.  相似文献   

6.
Epidermal growth factor receptor (EGFR) plays a critical role in the promotion of epithelial cell proliferation and migration. Previous studies have suggested a cooperative role between EGFR and integrin signalling pathways that enable efficient adhesion and migration but the mechanisms controlling this remain poorly defined. Here, we show that EGFR forms a complex with focal adhesion kinase in epithelial cells. Surprisingly, this complex enhances local Src activity at focal adhesions to promote phosphorylation of the cytoskeletal adaptor protein ezrin at Y478, leading to actomyosin contractility, suppression of focal adhesion dynamics and slower migration. We further demonstrate this regulation of Src is due to the suppression of PTP1B activity. Our data provide new insight into EGF-independent cooperation between EGFR and integrins and suggest transient interactions between these kinases at the leading edge of cells act to spatially control signalling to permit efficient motility.  相似文献   

7.
RhoGTPases organize the actin cytoskeleton to generate diverse polarities, from front–back polarity in migrating cells to dendritic spine morphology in neurons. For example, RhoA through its effector kinase, RhoA kinase (ROCK), activates myosin II to form actomyosin filament bundles and large adhesions that locally inhibit and thereby polarize Rac1-driven actin polymerization to the protrusions of migratory fibroblasts and the head of dendritic spines. We have found that the two ROCK isoforms, ROCK1 and ROCK2, differentially regulate distinct molecular pathways downstream of RhoA, and their coordinated activities drive polarity in both cell migration and synapse formation. In particular, ROCK1 forms the stable actomyosin filament bundles that initiate front–back and dendritic spine polarity. In contrast, ROCK2 regulates contractile force and Rac1 activity at the leading edge of migratory cells and the spine head of neurons; it also specifically regulates cofilin-mediated actin remodeling that underlies the maturation of adhesions and the postsynaptic density of dendritic spines.  相似文献   

8.
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.  相似文献   

9.
Mechanical forces play a major role in the regulation of cell adhesion and cytoskeletal organization. In order to explore the molecular mechanism underlying this regulation, we have investigated the relationship between local force applied by the cell to the substrate and the assembly of focal adhesions. A novel approach was developed for real-time, high-resolution measurements of forces applied by cells at single adhesion sites. This method combines micropatterning of elastomer substrates and fluorescence imaging of focal adhesions in live cells expressing GFP-tagged vinculin. Local forces are correlated with the orientation, total fluorescence intensity and area of the focal adhesions, indicating a constant stress of 5.5 +/- 2 nNmicrom(-2). The dynamics of the force-dependent modulation of focal adhesions were characterized by blocking actomyosin contractility and were found to be on a time scale of seconds. The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force.  相似文献   

10.
TRPM7, a novel regulator of actomyosin contractility and cell adhesion   总被引:13,自引:0,他引:13  
Actomyosin contractility regulates various cell biological processes including cytokinesis, adhesion and migration. While in lower eukaryotes, alpha-kinases control actomyosin relaxation, a similar role for mammalian alpha-kinases has yet to be established. Here, we examined whether TRPM7, a cation channel fused to an alpha-kinase, can affect actomyosin function. We demonstrate that activation of TRPM7 by bradykinin leads to a Ca(2+)- and kinase-dependent interaction with the actomyosin cytoskeleton. Moreover, TRPM7 phosphorylates the myosin IIA heavy chain. Accordingly, low overexpression of TRPM7 increases intracellular Ca2+ levels accompanied by cell spreading, adhesion and the formation of focal adhesions. Activation of TRPM7 induces the transformation of these focal adhesions into podosomes by a kinase-dependent mechanism, an effect that can be mimicked by pharmacological inhibition of myosin II. Collectively, our results demonstrate that regulation of cell adhesion by TRPM7 is the combined effect of kinase-dependent and -independent pathways on actomyosin contractility.  相似文献   

11.
We used immunofluorescence microscopy to study the organization of actin, myosin and vinculin in confluent endothelial cells and in cells migrating into an experimental wound and interference reflection microscopy to assess the cell-substratum adhesion pattern in these cells. In confluent stationary endothelial cell monolayers actin showed a distinct cell-to-cell organization. Myosin, on the other hand, was diffusely distributed and was clearly absent from cell peripheries. Vinculin was confined as linear arrays to cell-cell contact areas. Interference reflection microscopy revealed areas of close and distant adhesion but no focal adhesion sites in these cultures. Twelve hours after experimental wounding a distinct zone of advancing cells was seen at the wound edge. These cells showed a spreadout morphology and, in contrast to stationary cells, had a stress fibre-type organization of both actin and myosin. Vinculin was in the migrating cells seen as plaques at the ventral cell surface. In interference reflection microscopy numerous focal adhesions were seen. The results indicate that the actomyosin system forms the structural basis for monolayer organization of endothelial cells and responds by reorganization upon cell migration.  相似文献   

12.
We examined the role of regulatory myosin light chain (MLC) phosphorylation of myosin II in cell migration of fibroblasts. Myosin light chain kinase (MLCK) inhibition blocked MLC phosphorylation at the cell periphery, but not in the center. MLCK-inhibited cells did not assemble zyxin-containing adhesions at the periphery, but maintained focal adhesions in the center. They generated membrane protrusions all around the cell, turned more frequently, and migrated less effectively. In contrast, Rho-associated kinase (ROCK) inhibition blocked MLC phosphorylation in the center, but not at the periphery. ROCK-inhibited cells assembled zyxin-containing adhesions at the periphery, but not focal adhesions in the center. They moved faster and more straight. On the other hand, inhibition of myosin phosphatase increased MLC phosphorylation and blocked peripheral membrane ruffling, as well as turnover of focal adhesions and cell migration. Our results suggest that myosin II activated by MLCK at the cell periphery controls membrane ruffling, and that the spatial regulation of MLC phosphorylation plays critical roles in controlling cell migration of fibroblasts.  相似文献   

13.
In this article, we show that, in transfected COS-1 cells, protein tyrosine phosphatase (PTP)-PEST translocates to the membrane periphery following stimulation by the extracellular matrix protein fibronectin. When plated on fibronectin, PTP-PEST (-/-) fibroblasts display a strong defect in motility. 3 h after plating on fibronectin, the number and size of vinculin containing focal adhesions were greatly increased in the homozygous PTP-PEST mutant cells as compared with heterozygous cells. This phenomenon appears to be due in part to a constitutive increase in tyrosine phosphorylation of p130(CAS), a known PTP-PEST substrate, paxillin, which associates with PTP-PEST in vitro, and focal adhesion kinase (FAK). Another effect of this constitutive hyperphosphorylation, consistent with the focal adhesion regulation defect, is that (-/-) cells spread faster than the control cell line when plated on fibronectin. In the PTP-PEST (-/-) cells, an increase in affinity for the SH2 domains of Src and Crk towards p130(CAS) was also observed. In (-/-) cells, we found a significant increase in the level of tyrosine phosphorylation of PSTPIP, a cleavage furrow-associated protein that interacts physically with all PEST family members. An effect of PSTPIP hyperphosphorylation appears to be that some cells remain attached at the site of the cleavage furrow for an extended period of time. In conclusion, our data suggest PTP-PEST plays a dual role in cell cytoskeleton organization, by promoting the turnover of focal adhesions required for cell migration, and by directly or indirectly regulating the proline, serine, threonine phosphatase interacting protein (PSTPIP) tyrosine phosphorylation level which may be involved in regulating cleavage furrow formation or disassembly during normal cell division.  相似文献   

14.
Endothelial cell migration is critical for vascular angiogenesis and is compromised to facilitate tumor metastasis. The migratory process requires the coordinated assembly and disassembly of focal adhesions (FA), actin, and microtubules (MT). MT dynamics at FAs deliver vesicular cargoes and enhance actomyosin contractility to promote FA turnover and facilitate cell advance. Noncentrosomal (NC) MTs regulate FA dynamics and are sufficient to drive cell polarity, but how NC MTs target FAs to control FA turnover is not understood. Here, we show that Rac1 induces the assembly of FA-proximal septin filaments that promote NC MT growth into FAs and inhibit mitotic centromere-associated kinesin (MCAK)-associated MT disassembly, thereby maintaining intact MT plus ends proximal to FAs. Septin-associated MT rescue is coupled with accumulation of Aurora-A kinase and cytoplasmic linker-associated protein (CLASP) localization to the MT between septin and FAs. In this way, NC MTs are strategically positioned to undergo MCAK- and CLASP-regulated bouts of assembly and disassembly into FAs, thereby regulating FA turnover and cell migration.  相似文献   

15.
Caldesmon is known to inhibit the ATPase activity of actomyosin in a Ca(2+)-calmodulin-regulated manner. Although a nonmuscle isoform of caldesmon is widely expressed, its functional role has not yet been elucidated. We studied the effects of nonmuscle caldesmon on cellular contractility, actin cytoskeletal organization, and the formation of focal adhesions in fibroblasts. Transient transfection of nonmuscle caldesmon prevents myosin II-dependent cell contractility and induces a decrease in the number and size of tyrosine-phosphorylated focal adhesions. Expression of caldesmon interferes with Rho A-V14-mediated formation of focal adhesions and stress fibers as well as with formation of focal adhesions induced by microtubule disruption. This inhibitory effect depends on the actin- and myosin-binding regions of caldesmon, because a truncated variant lacking both of these regions is inactive. The effects of caldesmon are blocked by the ionophore A23187, thapsigargin, and membrane depolarization, presumably because of the ability of Ca(2+)-calmodulin or Ca(2+)-S100 proteins to antagonize the inhibitory function of caldesmon on actomyosin contraction. These results indicate a role for nonmuscle caldesmon in the physiological regulation of actomyosin contractility and adhesion-dependent signaling and further demonstrate the involvement of contractility in focal adhesion formation.  相似文献   

16.
Cell motility requires the spatial and temporal coordination of forces in the actomyosin cytoskeleton with extracellular adhesion. The biochemical mechanism that coordinates filamentous actin (F-actin) assembly, myosin contractility, adhesion dynamics, and motility to maintain the balance between adhesion and contraction remains unknown. In this paper, we show that p21-activated kinases (Paks), downstream effectors of the small guanosine triphosphatases Rac and Cdc42, biochemically couple leading-edge actin dynamics to focal adhesion (FA) dynamics. Quantitative live cell microscopy assays revealed that the inhibition of Paks abolished F-actin flow in the lamella, displaced myosin IIA from the cell edge, and decreased FA turnover. We show that, by controlling the dynamics of these three systems, Paks regulate the protrusive activity and migration of epithelial cells. Furthermore, we found that expressing Pak1 was sufficient to overcome the inhibitory effects of excess adhesion strength on cell motility. These findings establish Paks as critical molecules coordinating cytoskeletal systems for efficient cell migration.  相似文献   

17.
Fibroblasts derived from focal adhesion kinase (FAK)-null mouse embryos have a reduced migration rate and an increase in the number and size of peripherally localized adhesions (Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., and Yamamoto, T. (1995) Nature 377, 539-544). In this study, we have found that Y27632, a specific inhibitor for Rho-associated kinase (Rho-kinase), dramatically reversed the round cell morphology of FAK(-/-) cells to a spread fibroblast-like shape in 30 min and significantly enhanced their motility. The effects of Y27632 on the FAK(-/-) cell morphology and motility were concomitant with reorganization of the actin cytoskeleton and redistribution of focal adhesions. Conversely, the expression of the constitutively active Rho-kinase in FAK(+/+) cells led to round cell shape and inhibition of cell motility. Furthermore, coincident with the formation of cortical actin filaments, myosin light chain (MLC), Ser-19-phosphorylated MLC, and MLC kinase mainly accumulated at the FAK(-/-) cell periphery. We found that the disruption of actin filaments by cytochalasin D prevented the peripheral accumulation of MLC kinase and that inhibition of myosin-mediated contractility by 2,3-butanedione monoxime induced FAK(-/-) cells to spread. Taken together, our results suggest that Rho-kinase may mediate the formation of cortical actomyosin filaments at the FAK(-/-) cell periphery, which further recruits MLC kinase to the cell periphery and generates a non-polar contractile force surrounding the cell, leading to cell rounding and decreased motility.  相似文献   

18.
Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal.  相似文献   

19.
Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.  相似文献   

20.
The asymmetric distribution of microtubule (MT) dynamics in migrating cells is important for cell polarization, yet the underlying regulatory mechanisms remain underexplored. Here, we addressed this question by studying the role of the MT depolymerase, MCAK (mitotic centromere-associated kinesin), in the highly persistent migration of RPE-1 cells. MCAK knockdown leads to slowed migration and poor directional movement. Fixed and live cell imaging revealed that MCAK knockdown results in excessive membrane ruffling as well as defects in cell polarization and the maintenance of a major protrusive front. Additionally, loss of MCAK increases the lifetime of focal adhesions by decreasing their disassembly rate. These functions correlate with a spatial distribution of MCAK activity, wherein activity is higher in the trailing edge of cells compared with the leading edge. Overexpression of Rac1 has a dominant effect over MCAK activity, placing it downstream of or in a parallel pathway to MCAK function in migration. Together, our data support a model in which the polarized distribution of MCAK activity and subsequent differential regulation of MT dynamics contribute to cell polarity, centrosome positioning, and focal adhesion dynamics, which all help facilitate robust directional migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号