首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactive oxygen species (ROS) and proinflammatory cytokines produced by immune cells cause the oxidative stress involved in septic shock induced by endotoxin. This oxidative stress can be controlled to a certain degree by antioxidants, which is specially important for a type of immune cell, i.e. the phagocyte, that uses ROS to kill microorganisms and needs antioxidants in order to support its functions. In a previous study we have observed changes in several functions of peritoneal macrophages from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg), which were associated with a high production of superoxide anion. N-acetylcysteine (NAC) is a thiolic antioxidant that improves the immune response, and we have observed that when administered intraperitoneally (150 mg/kg) at 30 min after LPS injection it counteracts the effects of LPS on macrophages and lymphocytes. In the present work, we have studied the in vitro effect of several concentrations of NAC (0.001, 0.01, 0.1, 1 and 2.5 mM) on the following functions: adherence to substrate, chemotaxis, ingestion of particles, ROS production and the release of tumor necrosis factor (TNFalpha) of peritoneal macrophages from BALB/c mice at 2, 4,12 and 24 h after LPS injection. The results show that the administration of NAC (especially at 0.1 mM) decreases raised adherence, ingestion, ROS production and TNFalpha levels in macrophages from animals injected with LPS, bringing these functions to values near those of control animals. These effects which seem to be linked to a modulation of NF-kappaB, suggest that the improvement of immune functions observed in previous work after injection of NAC to animals with endotoxic shock could be due to a direct action of this thiol antioxidant on immune cells.  相似文献   

2.
Gram negative sepsis and septic shock continue to be a major medical problem, with a complex physiopathology and it is associated with high mortality. Although secretion of cytokines such as tumor necrosis factor-alpha by macrophages is the principal host mediator of septic shock, other characteristic functions of macrophages implicated in their phagocytic capacity have not been studied in the process of endotoxic shock. In the present study we have used an intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg) in order to obtain an endotoxic shock model in adult female BALB/c mice. Peritoneal cell suspensions were obtained at several times (2, 4, 12 or 24 h) after injection and the following functions were studied on the peritoneal macrophages: adherence to substrate, mobility (spontaneous and directed or chemotaxis), ingestion of particles and superoxide anion production. The results showed a stimulation of adherence, ingestion and superoxide production as well as a decrease of chemotaxis in the animals injected with LPS. These effects changed with time after LPS injection. Thus, the increase of adherence and the decrease of mobility were higher during the first hours, whereas the increase in ingestion and superoxide production turned larger with time.  相似文献   

3.
The excessive production of reactive oxygen species (ROS) associated with inflammation leads to oxidative stress, which is involved with the high mortality from several diseases such as endotoxic shock and can be controlled to a certain degree by antioxidants. The immune cells use ROS in order to support their functions and, therefore, need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive ROS production. In the present work, the effect of the administration of the antioxidant N-acetylcysteine (NAC) on the redox state of peritoneal macrophages and lymphocytes from mice with lethal endotoxic shock (100 mg/kg i.p. of lipopolysaccharide, LPS), was studied. In both types of immune cells at 0, 2, 4, 12 and 24 h after LPS injection, an increase of ROS, of the proinflammatory cytokine tumor necrosis factor alpha (TNFα), the lipid peroxidation (malonaldehyde levels, MDA), inducible nitric oxide synthase (iNOS) expression and the oxidized/reduced glutathione (GSSG/GSH) ratio, as well as a decrease of enzymatic antioxidant defenses, such as superoxide dismutase (SOD) and catalase (CAT) activity, was observed. The injection of NAC (150 mg/kg i.p. at 30 min after LPS injection) decreased the ROS, the TNFα the MDA levels, iNOS expression and the GSSG/GSH ratio, and increased the antioxidant defenses in both macrophages and lymphocytes. Moreover, the NAC treatment prevented the activation of nuclear translocation of the nuclear factor κB (NF-κB), which regulates ROS, inflammatory cytokines and antioxidant levels. Our present results provide evidence that both cell types have a relevant role in the pathogenesis of endotoxic shock, and that NAC, by improving the redox state of these immune cells, could increase mouse survival. Thus, antioxidants could offer an alternative treatment of human endotoxic shock.  相似文献   

4.
Free radicals and proinflammatory cytokines from phagocytes have been implicated in the pathogenesis of endotoxic shock, a disease with high mortality caused by Gram-negative bacterial endotoxin. In the present study, male BALB/c and Swiss mice received intraperitoneally lipopolysaccharide (LPS) at 100 mg/kg and 150 mg/kg, respectively, that led to a lethal endotoxic shock (100 % of mortality before 30 h). Swiss mice injected with 100 mg/kg, that did not show lethal endotoxic shock, were also studied. Peritoneal macrophages were obtained from animals at 2, 4, 12 or 24 h after injection of LPS or saline (control) solutions. Superoxide anion and tumor necrosis factor (TNFalpha) production were determined in these cells as well as other functions such as adherence capacity, chemotaxis and phagocytosis. The increase in superoxide anion production after endotoxin injection was higher in cells from mice with lethal shock than in those with non-lethal shock. However, the enhancement of TNFalpha production was similar in all cases, although in Swiss mice the highest levels of TNFalpha were observed at 1.5 h after endotoxin injection, while in BALB/c mice they occurred at 2 h after LPS injection. This oxidative stress was also revealed by the other functions analyzed, since adherence to substrate and phagocytosis were stimulated and chemotaxis was decreased after endotoxin injection as compared to controls, the differences being even more significant in animals with lethal shock. These data suggest that these changes, mainly the increased production of free radicals even more than the TNFalpha release, could be involved in mouse mortality caused by LPS.  相似文献   

5.
Oxidative stress associated with reactive oxygen species (ROS) and cytokines produced by immune cells, which is involved in septic shock caused by endotoxin, can be controlled to a certain degree by antioxidants with free radical scavenging action. N-acetylcysteine (NAC) and ascorbic acid (AA) are ROS scavengers that improve the immune response, and modulate macrophage function in mice with endotoxin-caused oxidative stress. Therefore, we have investigated the in vitro effects of these antioxidants on the functions of lymphocytes from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg). Adherence to tissues and chemotaxis (the earliest two functions of lymphocytes in the immune response), as well as ROS levels and TNF alpha production were determined in the presence or absence of NAC or AA (0.001, 0.01, 0.1, 1 and 2.5 mM) in lymphocytes from peritoneum, axillary nodes, spleen and thymus obtained at several times (2, 4, 12 and 24 hours) after LPS injection. Endotoxic shock decreases the chemotaxis of lymphocytes from all the above localizations and increases their adherence, TNF alpha and ROS production. These changes in lymphocyte function were counteracted by NAC and AA, bringing these functions to values near those of control animals. Our data suggest that lymphocytes are important targets of endotoxins contributing to oxidative stress by septic shock, and that antioxidants can preserve the function of lymphocytes, preventing the homeostatic disturbances caused by endotoxin.  相似文献   

6.
The excessive production of reactive oxygen species (ROS) associated with inflammation leads to oxidative stress, which is involved with the high mortality from several diseases such as endotoxic shock and can be controlled to a certain degree by antioxidants. The immune cells use ROS in order to support their functions and, therefore, need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive ROS production. In the present work, the effect of the administration of the antioxidant N-acetylcysteine (NAC) on the redox state of peritoneal macrophages and lymphocytes from mice with lethal endotoxic shock (100 mg/kg i.p. of lipopolysaccharide, LPS), was studied. In both types of immune cells at 0, 2, 4, 12 and 24 h after LPS injection, an increase of ROS, of the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha), the lipid peroxidation (malonaldehyde levels, MDA), inducible nitric oxide synthase (iNOS) expression and the oxidized/reduced glutathione (GSSG/GSH) ratio, as well as a decrease of enzymatic antioxidant defenses, such as superoxide dismutase (SOD) and catalase (CAT) activity, was observed. The injection of NAC (150 mg/kg i.p. at 30 min after LPS injection) decreased the ROS, the TNFalpha the MDA levels, iNOS expression and the GSSG/GSH ratio, and increased the antioxidant defenses in both macrophages and lymphocytes. Moreover, the NAC treatment prevented the activation of nuclear translocation of the nuclear factor kappaB (NF-kappaB), which regulates ROS, inflammatory cytokines and antioxidant levels. Our present results provide evidence that both cell types have a relevant role in the pathogenesis of endotoxic shock, and that NAC, by improving the redox state of these immune cells, could increase mouse survival. Thus, antioxidants could offer an alternative treatment of human endotoxic shock.  相似文献   

7.
Previously, the changes in phagocyte functions such as adherence, chemotaxis or TNFalpha production were found to be associated with oxidative stress in endotoxin-induced septic shock. However, in this type of oxidative stress the lymphocyte involvement has rarely been studied. In the present report, we analyzed the above functions in peritoneal lymphocytes from male and female BALB/c mice with a lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg), male and female Swiss mice with lethal endotoxic shock caused by intraperitoneal injection of LPS (150 and 250 mg/kg, respectively) or non-lethal endotoxic shock (100 mg/kg). In peritoneal lymphocytes obtained at 0, 2, 4, 12 or 24 h after LPS injection, the first two functions of these cells in the immune response, i.e. adherence to tissues and directed migration (chemotaxis), were studied. At 0, 0.5, 1, 1.5, 2, 4, 12 and 24 h after LPS injection, TNFalpha released by lymphocytes was also analyzed. The results show that endotoxic shock increases the adherence and TNFalpha release, and decreases the chemotaxis of peritoneal lymphocytes. These changes were more significant in mice with lethal than with non-lethal endotoxic shock, a fact that confirms the important role of lymphocytes during endotoxic shock.  相似文献   

8.
The administration of the thiol compounds, N-acetylcysteine (NAC) and in particular thioproline (thiazolidine-4-carboxylic acid) at 0.1% w/w concentration in the diet, improves lymphocyte functions in old female Swiss mice, as has been shown in our previous studies. In the present work, adult mice from two different strains, namely BALB/c (an inbred strain) and OF1-Swiss (noninbred strain), were fed a diet supplemented with the above dose of each thiol compound jointly for five weeks. At 28 weeks of age, peritoneal cell suspensions were obtained and different steps of the phagocytic process, the most representative activity of macrophages, as well as interleukin-1beta (IL-1beta) production, were studied. Thus, adherence to substrate, mobility directed to a chemoattractant gradient (chemotaxis), ingestion of inert particles and superoxide anion production were analysed. The results show that diet supplementation with NAC plus thioproline increased all macrophage functions studied with the exception of superoxide anion production, which was decreased. These effects were more evident in macrophages from Swiss mice, whereas in BALB/c mice the stimulation of phagocytosis and IL-1beta production was lower and no differences were seen after treatment in adherence and superoxide anion production. These data suggest that immune function can be improved in adult mice by administration of the above thiol compounds, especially in the noninbred strain of OF1-Swiss mice.  相似文献   

9.
We have studied natural killer (NK) activity, lymphoproliferative response, the release of several cytokines (IL-2, TNF alpha and IL-1 beta) and the ROS production in peritoneal leukocytes obtained 0, 2, 4, 12 and 24 h after lipopolysaccharide (LPS) injection. Lethal septic shock (100 % mortality occurred at 30 h after LPS administration) was caused in female BALB/c mice by intraperitoneal injection of 100 mg/kg of E. coli LPS. Cytotoxicity and lymphoproliferation assay were preformed together with the measurement of IL-1 beta, IL-2 and TNF alpha production, and quantification of ROS. Natural killer activity, spontaneous lymphoproliferative response, IL-2, TNF alpha, IL-beta release and ROS production were increased after LPS injection. In conclusions, ROS and proinflammatory mediators produced by immune cells in response to LPS are involved in the oxidative stress of endotoxic shock. This oxidative state alters some functional characteristics of leukocytes (proliferation and NK activity).  相似文献   

10.
Oxidative stress associated with reactive oxygen species (ROS) and cytokines produced by immune cells, which is involved in septic shock caused by endotoxin, can be controlled to a certain degree by antioxidants with free radical scavenging action. N-acetylcysteine (NAC) and ascorbic acid (AA) are ROS scavengers that improve the immune response, and modulate macrophage function in mice with endotoxin-caused oxidative stress. Therefore, we have investigated the in vitro effects of these antioxidants on the functions of lymphocytes from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg). Adherence to tissues and chemotaxis (the earliest two functions of lymphocytes in the immune response), as well as ROS levels and TNFα production were determined in the presence or absence of NAC or AA (0.001, 0.01, 0.1, 1 and 2.5 mM) in lymphocytes from peritoneum, axillary nodes, spleen and thymus obtained at several times (2, 4, 12 and 24 hours) after LPS injection. Endotoxic shock decreases the chemotaxis of lymphocytes from all the above localizations and increases their adherence, TNFα and ROS production. These changes in lymphocyte function were counteracted by NAC and AA, bringing these functions to values near those of control animals. Our data suggest that lymphocytes are important targets of endotoxins contributing to oxidative stress by septic shock, and that antioxidants can preserve the function of lymphocytes, preventing the homeostatic disturbances caused by endotoxin.  相似文献   

11.
12.
In order to confirm the hypothesis of the immunomodulating action of anti-oxidants (bringing back altered immune function to more optimum values), the possibility that anti-oxidants may be useful in two experimental models of altered immune function has been studied. The first is a pathological model, that is, lethal murine endotoxic shock caused by an LPS injection of 100 mg/kg, in which the lymphocytes show increased adherence and depressed chemotaxis. The injection of N-acetylcysteine (150 mg/kg), which increased both functions in control animals, decreased adherence and increased chemotaxis in mice with endotoxic shock. The second is a physiological model; aged human subjects (70 +/- 5-year-old men) who, in their largest segment of population ('standard' group) showed an increased lymphocyte adherence and decreased lymphoproliferative response to mitogens compared with younger adults. The ingestion of vitamin E (200 mg daily for 3 months in this standard group) lowered adherence and stimulated lymphoproliferation. However, a smaller segment of the human population tested showed 'non-standard' values in these lymphocyte functions, that is, very low adherence and very high proliferation. In those subjects, vitamin E showed the opposite effects, namely adherence increase and depressed lymphoproliferation. In both age groups of men, these functions reached adult levels after vitamin E ingestion. These data suggest that anti-oxidants preserve adequate function of immune cells against homeostatic disturbances such as those caused by endotoxic shock and ageing.  相似文献   

13.
14.
TNF is a major mediator in the pathogenesis of endotoxic shock, and its inhibition has a protective effect in various animal models of sepsis or endotoxin (lipopolysaccharide, LPS) toxicity. LPS treatment also induces an oxidative damage mediated by increased production of reactive oxygen intermediates. N-Acetylcysteine (NAC) is an antioxidant and a precursor of the synthesis of glutathione (GSH) and was reported to protect against LPS toxicity and LPS-induced pulmonary edema. In this study we investigated the effect of NAC on TNF production and LPS lethality in mice. The results indicated that oral administration of NAC protects against LPS toxicity and inhibits the increase in serum TNF levels in LPS-treated mice. The inhibition was not confined to the released form of TNF, since NAC also inhibited LPS-induced spleen-associated TNF. On the other hand, the inhibitor of GSH synthesis, DL-buthionine-(SR)-sulfoximine (BSO), had the opposite effect of potentiating LPS-induced TNF production, and this was associated with a decrease in liver GSH levels. Repletion of liver GSH with NAC reversed this effect. NAC was also active in inhibiting TNF production and hepatotoxicity in mice treated with LPS in association with a sensitizing dose of Actinomycin D. These data indicate that GSH can be an endogenous modulator of TNF production in vivo. On the other hand, NAC pretreatment did not inhibit other effects of LPS, particularly induction of serum IL-6, spleen IL-1 alpha, and corticosterone, in the same experimental model, suggesting that the observed effect could be specific for TNF.  相似文献   

15.
Effect of aging on the modulation of macrophage functions by neuropeptides   总被引:7,自引:0,他引:7  
The existence of a functional connection between the nervous and the immune system is supported by increasing recent evidence. In previous work we have shown that peptides from the nervous system, such as gastrin-releasing peptide (GRP), neuropeptide Y (NPY) and sulfated cholecystokinin octapeptide (CCK-8s), have modulatory effects on the immune functions in adult animals. Since the immunodepression found in aging organisms may be related to changes in the neuroimmune network, the aim of the present work was to study the changes with aging in the effect of CCK-8s, GRP and NPY on peritoneal macrophage functions (adherence to tissues, mobility, ingestion of foreign particles and superoxide anion production) from BALB/c mice of three different ages: adult (24+/-2 weeks old), mature (50+/-2 weeks old) and old (72+/-2 weeks old). The results show that the increase in adherence capacity produced by neuropeptides in cells from adult and mature animals disappears in old mice. The stimulatory effect of GRP and NPY on mobility, ingestion and superoxide production in macrophages from adult mice disappears (GRP) or changes to inhibition (NPY) in cells from old animals. The decrease of these functions caused by CCK-8s in adult or mature animals continues in old mice. These data suggest that the modulation by neuropeptides of the macrophage function changes with the age of animals.  相似文献   

16.
Oxidative stress, associated with a high production of reactive oxygen species (ROS) by immune cells, is involved in the endotoxic shock caused by endotoxin. This oxidative stress is linked to the inability of the immune cells to maintain adequate levels of antioxidants with free radical-scavenging action. Glutathione (GSH) and ascorbic acid (AA) are intracellular and extracellular antioxidants (ROS scavengers) that improve the leukocyte functions. Therefore, in the present work we have determined the reduced GSH and AA content in axillary nodes, spleen, thymus and peritoneal mononuclear leukocytes from BALB/c mice subjected to lethal endotoxic shock produced by intraperitoneal injection of E. coli lipopolysaccharide (LPS, 100 mg/kg), at several times (0, 2, 4, 12 and 24 h) after LPS injection. Endotoxic shock decreased the levels of AA in the leukocytes from the three organs as well as the levels of GSH in axillary nodes and spleen cells while it increased the GSH levels in thymus and peritoneum. These results are in agreement with the oxidative stress and the altered function previously observed in those leukocytes, and they suggest that antioxidant administration may be useful for the treatment of endotoxic shock and other oxidative stress situations with altered immunological responses.  相似文献   

17.
Ascorbic acid (AA) is an important cytoplasmic antioxidant that mice synthesize in the liver, the intracellular levels of which decrease in an oxidative stress situation such as endotoxic shock. The present work deals with the changes in AA levels, that modulate the immune function, in the two main immune cells, namely macrophages and lymphocytes, from female BALB/c mice suffering endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg). The intake by cells of this antioxidant present in vitro at different concentrations was also studied. The animals show an oxidative stress, standardized in previous studies, that causes mortality at 30 h after LPS injection. The cells were obtained from the peritoneum at 2, 4, 12 and 24 h after LPS or PBS (control) injections and were incubated without or with AA at 0.01, 0.1 and 1 mM for 10, 30, 60, 120 or 180 min. The hepatic AA levels were also studied at 0, 2, 4, 12 and 24 h after LPS injection. The peritoneal cells obtained from animals injected with LPS showed increased AA levels in relation to the control cells at all times after LPS injection, with maximal effect at 12h. The AA levels decreased after this time, in agreement with changes in the AA hepatic levels. The increase was due to the AA of lymphocytes since macrophages showed a decrease in AA at different times after LPS injection. Both cells showed an increase in the intracellular levels of AA when this antioxidant was added in vitro. This takes place mainly at 30-60 min of incubation in cells from controls and at 10 min in cells from treated mice 12-24 h after LPS injection. The incorporation decreased at these times of endotoxic shock, a few hours before death. In all cases AA levels were higher in lymphocytes than in macrophages, and 1 mM was the most effective concentration. These results suggest that the immune cells need appropriate levels of antioxidants, such as AA, under oxidative stress conditions, and that while lymphocytes take and accumulate AA, macrophages use it.  相似文献   

18.
Hereditary properdin deficiency is linked to susceptibility to meningococcal disease (Neisseria meningitidis serotypes Y and W-135) with high mortality. Its relative contribution toward the outcome of nonseptic shock has not been investigated. Using properdin-deficient C57BL/6 mice and their littermates, this study examines their survival of zymosan-induced and LPS-induced shock. Properdin-deficient mice were more resistant to zymosan shock compared with wild-type mice, which showed greater impairment of end-organ function 24 h after zymosan injection, higher TNF-alpha production by alveolar and peritoneal macrophages, higher TNF-alpha, and, inversely, lower IL-10 levels in peritoneal lavage and circulation and higher plasma C5a levels. Properdin-deficient mice showed significantly higher mortality in LPS shock, elevated TNF-alpha, and, inversely, reduced IL-10 production by peritoneal macrophages as well as lower plasma C5a levels compared with wild-type littermates. NO production by peritoneal macrophages and plasma alpha1-antitrypsin levels at 24 h after the injection of LPS or zymosan were decreased in properdin-deficient mice in both models, and fewer histopathologic changes in liver were observed in properdin-deficient animals. This study provides evidence that properdin deficiency attenuates zymosan-induced shock and exacerbates LPS-induced shock.  相似文献   

19.
Ascorbic acid (AA) is an important cytoplasmic antioxidant that mice synthesize in the liver, the intracellular levels of which decrease in an oxidative stress situation such as endotoxic shock. The present work deals with the changes in AA levels, that modulate the immune function, in the two main immune cells, namely macrophages and lymphocytes, from female BALB/c mice suffering endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg). The intake by cells of this antioxidant present in vitro at different concentrations was also studied. The animals show an oxidative stress, standardized in previous studies, that causes mortality at 30h after LPS injection. The cells were obtained from the peritoneum at 2, 4, 12 and 24h after LPS or PBS (control) injections and were incubated without or with AA at 0.01, 0.1 and 1 mM for 10, 30, 60, 120 or 180 min. The hepatic AA levels were also studied at 0, 2, 4, 12 and 24h after LPS injection. The peritoneal cells obtained from animals injected with LPS showed increased AA levels in relation to the control cells at all times after LPS injection, with maximal effect at 12h. The AA levels decreased after this time, in agreement with changes in the AA hepatic levels. The increase was due to the AA of lymphocytes since macrophages showed a decrease in AA at different times after LPS injection. Both cells showed an increase in the intracellular levels of AA when this antioxidant was added in vitro. This takes place mainly at 30–60 min of incubation in cells from controls and at 10 min in cells from treated mice 12–24 h after LPS injection. The incorporation decreased at these times of endotoxic shock, a few hours before death. In all cases AA levels were higher in lymphocytes than in macrophages, and 1 mM was the most effective concentration. These results suggest that the immune cells need appropriate levels of antioxidants, such as AA, under oxidative stress conditions, and that while lymphocytes take and accumulate AA, macrophages use it.  相似文献   

20.
A sugar cane extract (SCE) has been found to have an immunostimulating effect in several animals. Lipopolysaccharide (LPS) is known to induce endotoxin shock via the production of inflammatory modulators such as tumor necrosis factor (TNF)-alpha and nitric oxide (NO). We examined in the present study the effects of SCE on the TNF-alpha and NO production in LPS-stimulated mice peritoneal cells and the endotoxin shock in mice. The supplementation of SCE to peritoneal macrophages cultured with LPS resulted in a significant decrease in NO production. All the mice injected intraperitoneally with LPS and D-galactosamine (LPS+GalN) died within 24 h. However, a peritoneal injection, but no intravenous or oral administration, of SCE (500-1,000 mg/kg) at 3 to 48 h before the LPS+GalN-challenge resulted in a significantly improved survival rate. These results suggest that SCE had a protective effect on LPS-induced endotoxin shock via one of possible mechanisms involving the suppression of NO production in the mouse peritoneal cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号