首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylosides are a group of compounds that can induce glycosaminoglycan (GAG) chain synthesis independently of a proteoglycan core protein. We have previously shown that the xyloside 2-(6-hydroxynaphthyl)β-D-xylopyranoside has a tumor-selective growth inhibitory effect both in vitro and in vivo, and that the effect in vitro was correlated to a reduction in histone H3 acetylation. In addition, GAG chains have previously been reported to inhibit histone acetyltransferases (HAT). To investigate if xylosides, or the corresponding xyloside-primed GAG chains, can be used as HAT inhibitors, we have synthesized a series of naphthoxylosides carrying structural motifs similar to the aromatic moieties of the known HAT inhibitors garcinol and curcumin, and studied their biological activities. Here, we show that the disubstituted naphthoxylosides induced GAG chain synthesis, and that the ones with at least one free phenolic group exhibited moderate HAT inhibition in vitro, without affecting histone H3 acetylation in cell culture. The xyloside-primed GAG chains, on the other hand, had no effect on HAT activity, possibly explaining why the effect of the xylosides on histone H3 acetylation was absent in cell culture as the xylosides were recruited for GAG chain synthesis. Further investigations are required to find xylosides that are effective HAT inhibitors or xylosides producing GAG chains with HAT inhibitory effects.  相似文献   

2.
Proteoglycans (PGs) are important macromolecules in mammalian cells, consisting of a core protein substituted with carbohydrate chains, known as glycosaminoglycans (GAGs). Simple xylosides carrying hydrophobic aglycons can enter cells and act as primers for GAG chain synthesis, independent of the core protein. Previously it has been shown that aromatic aglycons can be separated from the sugar residue by short linkers without affecting the GAG priming ability. To further investigate the effects of the xylose–aglycon distance on the GAG priming ability, we have synthesized xyloside derivatives with 2-naphthyl and 2-(6-hydroxynaphthyl) moieties connected to xylose, directly, via a methylene bridge, or with oligoethylene glycol linkers of three different lengths. The GAG priming ability and the antiproliferative activity of the xylosides, as well as the composition of the xyloside-primed GAG chains were investigated in a matched pair of human breast fibroblasts and human breast carcinoma cells. An increase of the xylose–aglycon distance from 0.24 to 0.37 nm resulted in an increased GAG priming ability in both cell lines. Further increase of the xylose–aglycon distance did not result in any pronounced effects. We speculate that by increasing the xylose–aglycon distance, and thereby the surface area of the xyloside, to a certain level would make it more accessible for enzymes involved in the GAG synthesis. The compositions of the primed GAG chains varied with different xylosides, independent of the xylose–aglycon distance, probably due to various affinities for enzymes and/or different cellular uptake. Furthermore, no correlations between the antiproliferative activities, the xylose–aglycon distances, and the amounts or compositions of the GAG chains were detected suggesting involvement of other factors such as fine structure of the GAG chains, effects on endogenous PG synthesis, or other unknown factors for the antiproliferative activity.  相似文献   

3.
《Developmental neurobiology》2017,77(12):1401-1412
In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical‐period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside‐mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical‐period‐dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401–1412, 2017  相似文献   

4.
Glycosaminoglycan (GAG) biosynthesis requires numerous biosynthetic enzymes and activated sulfate and sugar donors. Although the sequence of biosynthetic events is resolved using reconstituted systems, little is known about the emergence of cell-specific GAG chains (heparan sulfate, chondroitin sulfate, and dermatan sulfate) with distinct sulfation patterns. We have utilized a library of click-xylosides that have various aglycones to decipher the mechanism of GAG biosynthesis in a cellular system. Earlier studies have shown that both the concentration of the primers and the structure of the aglycone moieties can affect the composition of the newly synthesized GAG chains. However, it is largely unknown whether structural features of aglycone affect the extent of sulfation, sulfation pattern, disaccharide composition, and chain length of GAG chains. In this study, we show that aglycones can switch not only the type of GAG chains, but also their fine structures. Our findings provide suggestive evidence for the presence of GAGOSOMES that have different combinations of enzymes and their isoforms regulating the synthesis of cell-specific combinatorial structures. We surmise that click-xylosides are differentially recognized by the GAGOSOMES to generate distinct GAG structures as observed in this study. These novel click-xylosides offer new avenues to profile the cell-specific GAG chains, elucidate the mechanism of GAG biosynthesis, and to decipher the biological actions of GAG chains in model organisms.Proteoglycans play a major role in various cellular/physiological processes, including blood clotting, growth factor signaling, embryogenesis, axon growth and guidance, angiogenesis, and others (14). Proteoglycans consists of a core protein and glycosaminoglycan (GAG)2 chains. GAG chains account for >50% of the total molecular weight and are primarily responsible for physiological activity of the proteoglycans (5, 6). GAG chains are composed of repeating disaccharide units of a hexosamine residue and a hexuronic acid residue. The three major types of GAG chains found in the proteoglycans are heparan sulfate (HS), chondroitin sulfate (CS) and dermatan sulfate (DS). These GAG chains are differentiated by the type of hexosamine (glucosamine/galactosamine), the percentage of uronic acid epimers (glucuronic/iduronic acid), the extent of sulfation, and the nature of glycosidic linkage (α-/β-). One of the key steps in the proteoglycan biosynthesis is the xylosylation of certain specific serine residues of the core protein (710), which occurs in the late endoplasmic reticulum and/or cis-Golgi compartments (1113). This key event is an essential prelude for the construction of the proteoglycan linkage region (14) that is followed by sequence of events resulting in the assembly of mature GAG chains by alternative addition of hexosamine and glucuronic acid residues. The maturation of GAG chains occurs in the medial and trans-Golgi compartments and involves the following events: N-sulfation of glucosamine units by N-deacetylase-N-sulfotransferases (for HS only), epimerization of glucuronic acids to iduronic acids by C-5 epimerase, and sulfation of the repeating disaccharide units by a variety of sulfotransferases and their isoforms.The position, extent, and pattern of sulfation attribute enormous diversity to GAG chains, which confer specificity in binding to a vast array of proteins. These diverse structural features are very tightly regulated in a spatio-temporal manner during and beyond the development of an organism, and these features dictate differential interactions with various growth factors and receptors, and numerous protein targets leading to an array of physiological functions (15, 16).The presence of free GAG chains has been known to disrupt the interaction of endogenous GAG components of proteoglycans with protein ligands thereby altering the physiological activities. Consequently, they have been used as molecular tools in the elucidation of the role of GAG chains in the activation of cellular events (1719). Free GAG chains can be synthesized in vitro in cell culture by providing exogenous xylosides containing various hydrophobic aglycone moieties. Thus, the xylosides can act as false acceptors for initiation of linkage region and the subsequent elongation of GAG chains. Xylosides have been used for over three decades both in vitro (2028) and in vivo (25, 2931) to probe the functional significance of GAG chains in various dynamic systems under different conditions. The quantity and type of GAG chains synthesized depends on the system where it was tested and on the structure of the aglycone moiety of the xylosides (3234). Most of these studies have utilized a few O-xylosides that are inherently less stable. Furthermore, synthesis of O-xylosides requires very stringent reaction conditions, toxic Lewis acids, and at times leads to inseparable α and β mixtures with unpredictable yields. As a result, it is tedious to generate diverse xylosides in a rapid fashion and utilize them in biological systems. We envisioned that synthesis of metabolically stable xylosides will advance our knowledge of glycosaminoglycan biosynthesis and how they regulate various pathophysiological processes.In our earlier communication, we outlined a simple strategy, utilizing click chemical methodology that addresses the above limitations of O-xylosides, to generate a library of xylosides in a robust manner (35). Several studies have shown that the concentration of the primers and the aglycone moieties influence the composition of GAG chains produced (32). In the current study, we show that the aglycone moieties of click-xylosides may not only influence the composition and quantity of GAG chains but also the extent of sulfation, sulfation pattern, disaccharide composition, and chain length using pgsA-745 Chinese hamster ovary (CHO) cell line as a model cellular system. Our findings provide new insights in to the mechanism of GAG biosynthesis and offer new avenues to decipher the biological actions of GAG chains in model organisms.  相似文献   

5.
Xylosides are small molecules that serve as primers of glycosaminoglycan biosynthesis. Xyloside mediated modulation of biological functions depends on the extent of priming activity and fine structures of primed GAG chains. In earlier studies, copper (Cu) catalyzed synthesis of click-xylosides and their priming activity were extensively documented. In the current study, ruthenium (Ru) mediated catalysis was employed to synthesize xylosides with a 1,5-linkage between the xylose and the triazole ring instead of a 1,4-linkage as found in Cu-catalyzed click-xyloside synthesis. Mono- and bis-click-xylosides were synthesized using each catalytic method and their glycosaminoglycan priming activity was assessed in vitro using a cellular system. Ru-catalyzed click-xylosides showed a higher priming activity as measured by incorporation of radioactive sulfate into primed glycosaminoglycan chains. This study demonstrates that altering the linkage of the aglycone to the triazole ring changes the priming activity. Computational modeling provides a molecular rationale for higher priming ability of Ru-mediated click-xylosides. Higher GAG priming activity is attributed to the formation of more stable interactions between the 1,5-linked xylosides and β-1,4-galactosyltransferase 7 (β4GalT7).  相似文献   

6.
Proteoglycans (PGs) are critically involved in major cellular processes. Most PG activities are due to the large interactive properties of their glycosaminoglycan (GAG) polysaccharide chains, whose expression and fine structural features are tightly controlled by a complex and highly regulated biosynthesis machinery. Xylosides are known to bypass PG-associated GAG biosynthesis and prime the assembly of free polysaccharide chains. These are, therefore, attractive molecules to interfere with GAG expression and function. Recently, we have developed a new xyloside derivative, C-Xyloside, that shares classical GAG-inducing xyloside activities while exhibiting improved metabolic stability. We have previously shown that C-Xyloside had beneficial effects on skin homoeostasis/regeneration using a number of models, but its precise effects on GAG expression and fine structure remained to be addressed. In this study, we have therefore investigated this in details, using a reconstructed dermal tissue as model. Our results first confirmed that C-Xyloside strongly enhanced synthesis of GAG chains, but also induced significant changes in their structure. C-Xyloside primed GAGs were exclusively chondroitin/dermatan sulfate (CS/DS) that featured reduced chain size, increased O-sulfation, and changes in iduronate content and distribution. Surprisingly, C-Xyloside also affected PG-borne GAGs, the main difference being observed in CS/DS 4-O/6-O-sulfation ratio. Such changes were found to affect the biological properties of CS/DS, as revealed by the significant reduction in binding to Hepatocyte Growth Factor observed upon C-Xyloside treatment. Overall, this study provides new insights into the effect of C-Xyloside on GAG structure and activities, which opens up perspectives and applications of such compound in skin repair/regeneration. It also provides a new illustration about the use of xylosides as tools for modifying GAG fine structure/function relationships.  相似文献   

7.
Extracellular nucleotides ATP, ADP, AMP and adenosine are well known signaling molecules of the cardiovascular system that are involved in several physiological processes: cell proliferation, platelet aggregation, inflammatory processes and vascular tonus. The levels of these molecules are controlled by ecto-NTPDases and ecto-5′-nucleotidase/CD73 (ecto-5′-NT/CD73) actions, which are responsible for the complete ATP degradation to adenosine. The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), play important roles in the vascular system promoting vasodilatation. Here we investigated the influence of thyroid hormones on the enzyme cascade that catalyzes the interconversion of purine nucleotides in vascular smooth muscle cells (VSMC). Exposure of VSMCs to 50nM T3 or T4 did not change ATP and ADP hydrolysis significantly. However, the same treatment caused an increase of 75% in AMP hydrolysis, which was time-dependent but dose-independent. Moreover, T3 treatment significantly increased ecto-5′-NT/CD73 mRNA expression, which suggests a genomic effect of this hormone upon ecto-5′-NT/CD73. In addition to the importance of the ecto-5′-NT in cell proliferation and differentiation, its overexpression could result in higher extracellular levels of adenosine, an important local vasodilatator molecule.  相似文献   

8.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

9.
Sulfated glycosaminoglycan (GAG) chains are a class of long linear polysaccharides that are covalently attached to multiple core proteins to form proteoglycans (PGs). PGs are major pericellular and extracellular matrix components that surround virtually all mammalian cell surfaces, and create conducive microenvironments for a number of essential cellular events, such as cell adhesion, cell proliferation, differentiation, and cell fate decisions. The multifunctional properties of PGs are mostly mediated by their respective GAG moieties, including chondroitin sulfate (CS), heparan sulfate (HS), and keratan sulfate (KS) chains. Structural divergence of GAG chains is enzymatically generated and strictly regulated by the corresponding biosynthetic machineries, and is the major driving force for PG functions. Recent studies have revealed indispensable roles of GAG chains in stem cell biology and technology. In this review, we summarize the current understanding of GAG chain-mediated stem cell niches, focusing primarily on structural characteristics of GAG chains and their distinct regulatory functions in stem cell maintenance and fate decisions.  相似文献   

10.
Polarized epithelial cells like Madin-Darby canine kidney (MDCK) and CaCo-2 cells synthesize and secrete proteoglycans (PGs), mostly of heparan sulphate (HS) type in direction of the basal extracellular matrix, but also some in the apical direction. MDCK cells possess the capacity to synthesize chondroitin sulphate (CS) PGs that are mainly secreted into the apical medium, a process that is enhanced in the presence of hexyl-β-d-xyloside. We have now tested the capacity of several xylosides to enhance glycosaminoglycan (GAG) chain secretion from the human colon carcinoma cell line CaCo-2 in the differentiated and non-differentiated state. In these cells, benzyl-β-d-xyloside was a potent initiator of CS chains, which for these cells were predominantly secreted into the basolateral medium. Xylosides with other aglycone groups mediated only minor changes in GAG secretion. Although benzyl-β-d-xyloside stimulated the basolateral CS-GAG secretion in both differentiated and undifferentiated CaCo-2 cells, basolateral secretion of trypsin-like activity was dramatically enhanced in undifferentiated cells, but not significantly altered in differentiated cells.  相似文献   

11.
12.
The role of glycosaminoglycans (GAGs) in the branching morphogenesis of embryonic mouse salivary glands was investigated by culturing the glands in the presence of xylose derivatives which stimulate synthesis of the xyloselinked classes of GAGs. Branching morphogenesis is inhibited severely, but reversibly, by 0.5–1.0 mM π-nitrophenyl-β-d-xylopyranoside and the inhibition correlates with a stimulation of incorporation of [3H]glucosamine (1.8-fold) and [35S]sulfate (almost 3-fold) into GAGs. The effect of β-xyloside on accumulation of newly synthesized GAG also occurs in the presence of the protein synthesis inhibitor cycloheximide, suggesting that the production of free GAG chains rather than proteoglycan-associated GAGs is being stimulated. The xyloside effects apparently do not result from general cytotoxicity of the derivatives, since similar concentrations of the α-anomer do not alter salivary branching or GAG synthesis, the rudiments resume morphogenesis when returned to control medium, and the effect on GAG synthesis is stimulatory rather than inhibitory. The study suggests that GAG biosynthesis plays an important role in salivary development, and that xylosides provide useful probes for characterizing the molecular events controlling branching morphogenesis.  相似文献   

13.
Proteoglycans (PG) are polyanionic proteins consisting of a core protein substituted with carbohydrate chains, that is, glycosaminoglycans (GAG). The biosynthesis of GAG can be manipulated by simple xylosides carrying hydrophobic aglycons, which can enter the cell and initiate the biosynthesis. While the importance of the aglycon is well investigated, there is far less information on the effect of modifications in the xylose residue. We have developed a new synthetic protocol, based on acetal protection and selective benzylation, for modification of the three hydroxyl groups in xylose. Thus we have synthesized twelve analogs of 2-naphthyl β-d-xylopyranoside (XylNap), where each hydroxyl group has been epimerized or replaced by methoxy, fluoro, or hydrogen. To gain more information about the properties of xylose, conformational studies were made on some of the analogs. It was found that the (4)C(1) conformation is highly predominant, accompanied by a nonnegligible population of the (2)S(0) conformation. However, deoxygenation at C3 results in a large portion of the (1)C(4) conformation. The GAG priming ability and proliferation activity of the twelve analogs, were investigated using a matched pair of human breast fibroblasts and human breast carcinoma cells. None of the analogs initiated the biosynthesis of GAG, but an inhibitory effect on endogenous PG production was observed for analogs fluorinated or deoxygenated at C4. From our data it seems reasonable that all three hydroxyl groups in XylNap are essential for the priming of GAG chains and for selective toxicity for tumor cells.  相似文献   

14.
The product of Wilms‘ tumor gene 1 (WT1) is overexpressed in diverse human tumors, including leukemia, lung and breast cancer, and is often recognized by antibodies in the sera of patients with leukemia. Since WT1 encodes MHC class I-restricted peptides recognized by cytotoxic T lymphocytes (CTL), WT1 has been considered as a promising tumor-associated antigen (TAA) for developing anticancer immunotherapy. In order to carry out an effective peptide-based cancer immunotherapy, MHC class II-restricted epitope peptides that elicit anti-tumor CD4+ helper T lymphocytes (HTL) will be needed. In this study, we analyzed HTL responses against WT1 antigen using HTL lines elicited by in vitro immunization of human lymphocytes with synthetic peptides predicted to serve as HTL epitopes derived from the sequence of WT1. Two peptides, WT1124–138 and WT1247–261, were shown to induce peptide-specific HTL, which were restricted by frequently expressed HLA class II alleles. Here, we also demonstrate that both peptides-reactive HTL lines were capable of recognizing naturally processed antigens presented by dendritic cells pulsed with tumor lysates or directly by WT1+ tumor cells that express MHC class II molecules. Interestingly, the two WT1 HTL epitopes described here are closely situated to known MHC class I-restricted CTL epitopes, raising the possibility of stimulating CTL and HTL responses using a relatively small synthetic peptide vaccine. Because HTL responses to TAA are known to be important for promoting long-lasting anti-tumor CTL responses, the newly described WT1 T-helper epitopes could provide a useful tool for designing powerful vaccines against WT1-expressing tumors.  相似文献   

15.
16.
Pro-inflammatory cytokines induce meniscal matrix degradation and inhibition of endogenous repair mechanisms, but the pathogenic mechanisms behind this are mostly unknown. Therefore, we investigated details of interleukin-1 (IL-1α)-induced aggrecan turnover in mature meniscal tissue explants. Fibro-cartilagenous disks (3 mm diameter × 1 mm thickness) were isolated from the central, weight-bearing region of menisci from 2-year-old cattle. After 3 or 6 days of IL-1α-treatment, GAG loss (DMMB assay), biosynthetic activity ([35SO4]-sulfate and [3H]-proline incorporation), gene expression (quantitative RT-PCR) and the abundance (zymography, Western blot) of matrix-degrading enzymes and specific aggrecan products were determined. Meniscal fibrocartilage had a 4-fold lower GAG content (per wet weight) than adjacent articular cartilage, and expressed MMPs-1, -2, -3 and ADAMTS4 constitutively, whereas ADAMTS5 m-RNA was essentially undetectable. Significant IL-1 effects were a decrease in biosynthetic activity, an increase in GAG release and in the expression/abundance of MMP-2, MMP-3 and ADAMTS4. Fresh tissue contained aggrecan core protein products similar to those previously described for bovine articular cartilage of this age. IL-1 induced the release of aggrecanase-generated CS-substituted products including both high (>250 kDa) and low molecular weight (about 75 kDa) species. TIMP-3 (but not TIMP-1 and -2 or a broad spectrum MMP inhibitor) inhibited IL-1-dependent GAG loss. In addition, IL-1 induced the release of preformed pools of three known G1-bearing products. We conclude that aggrecanases are responsible for IL-1-stimulated GAG release from meniscal explants, and that IL-1 also stimulates release of G1-bearing products, by a process possibly involving hyaluronan fragmentation.  相似文献   

17.
Plasmalemmal vacuolar-type H+-ATPase in cancer biology   总被引:6,自引:0,他引:6  
Vacuolar-type H+-adenosine triphosphatase (V-ATPase) is one of the most fundamental enzymes in nature. V-ATPases are responsible for the regulation of proton concentration in the intracellular acidic compartments. It has similar structure with the mitochondrial F0F1-ATP synthase (F-ATPase). The V-ATPases are composed of multiple subunits and have various physiological functions, including membrane and organelle protein sorting, neurotransmitter uptake, cellular degradative processes, and cytosolic pH regulation. The V-ATPases have been involved in multidrug resistance. Recently, plasma membrane V-ATPases have been involved in regulation of extracellular acidity, essential for cellular invasiveness and proliferation in tumor metastasis. The current knowledge regarding the structure and function of V-ATPase and its role in cancer biology is discussed. F in F0F1 ATPase is the coupling energy factor.  相似文献   

18.
Posttranslational modification of proteins by covalent attachment of a small protein ubiquitin (Ub) or a polymeric chain of Ub molecules (called polyubiquitin) is involved in controlling a vast variety of processes in eukaryotic cells. The question of how different polyubiquitin signals are recognized is central to understanding the specificity of various types of polyubiquitination. In polyubiquitin, monomers are linked to each other via an isopeptide bond between the C-terminal glycine of one Ub and a lysine of the other. The functional outcome of polyubiquitination depends on the particular lysine involved in chain formation and appears to rely on linkage-dependent conformation of polyubiquitin. Thus, K48-linked chains, a universal signal for proteasomal degradation, under physiological conditions adopt a closed conformation where functionally important residues L8, I44, and V70 are sequestered at the interface between two adjacent Ub monomers. By contrast, K63-linked chains, which act as a nonproteolytic regulatory signal, adopt an extended conformation that lacks hydrophobic interubiquitin contact. Little is known about the functional roles of the so-called “noncanonical” chains (linked via K6, K11, K27, K29, or K33, or linked head-to-tail), and no structural information on these chains is available, except for information on the crystal structure of the head-to-tail-linked diubiquitin (Ub2). In this study, we use molecular modeling to examine whether any of the noncanonical chains can adopt a closed conformation similar to that in K48-linked polyubiquitin. Our results show that the eight possible Ub2 chains can be divided into two groups: chains linked via K6, K11, K27, or K48 are predicted to form a closed conformation, whereas chains linked via K29, K33, or K63, or linked head-to-tail are unable to form such a contact due to steric occlusion. These predictions are validated by the known structures of K48-, K63-, and head-to-tail-linked chains. Our study also predicts structural models for Ub2 chains linked via K6, K11, or K27. The implications of these findings for linkage-selective recognition of noncanonical polyubiquitin signals by various receptors are discussed.  相似文献   

19.

Introduction  

Little is known about factors that induce meniscus damage. Since joint inflammation appears to be a causative factor for meniscal destruction, we investigated the influence of tumor necrosis factor (TNFα) on glycosaminoglycan (GAG) release and aggrecan cleavage in an in vitro model.  相似文献   

20.
Attachment of microorganisms to host cells is believed to be a critical early step in microbial pathogenesis. The aim of the study was to determine the role of the known glycosaminoglycan (GAG) binding activity of Staphylococcus aureus and coagulase-negative staphylococci (CoNS) in their attachment to six different eukaryotic cell lines. Three staphylococcal species expressing GAG binding capacity—S. aureus, S. epidermidis, and S. hemolyticus—were chosen for investigation. Six different eukaryotic cell lines, endothelial HUVEC and EA. hy 926 cells, epithelial A549 and HeLa S3 cells, fibroblasts HEL Sp 12 and macrophages J774.A1, were included. A modified ELISA with biotinylated bacteria was used for estimating the adhesion of staphylococci to each of the cell lines. Our results showed that staphylococci adhered to each of the cell lines studied, although the binding of CoNS strains to epithelial cells was lower than to the other cells. The attachment to all cell types could be partially decreased by pretreatment of the bacteria with various polysulfated agents (highest inhibition was 60%), as well as by chlorate and heparitinase treatment of the cells. These observations may suggest that at least one mode of staphylococcal attachment utilizes GAG chains present on the surface of virtually all adherent cells. Received: 6 September 2000 / Accepted: 29 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号