首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
It was first shown in the PR (PRDI-BF1 and RIZ homology) domain family proteins that the PR domain has homology to the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) domain, a catalytic domain of the histone lysine methyltransferases. Recently, there are many reports that the PR domain proteins have important roles in development and/or cell differentiation. In this report, we show the expression patterns of one of the mouse PR domain proteins, Prdm8, in the developing central nervous system. In the developing retina, Prdm8 expression was detected in postmitotic neurons in the inner nuclear layer and the ganglion cell layer, and its expression became restricted predominantly to the rod bipolar cells when retinogenesis was completed. In the developing spinal cord, Prdm8 was expressed first in the progenitor populations of ventral interneurons and motor neurons, and later in a subpopulation of interneurons. In the developing brain, Prdm8 expression was observed in postmitotic neurons in the intermediate zone and the cortical plate. In the postnatal brain, Prdm8 was expressed mainly in layer 4 neurons of the cerebral cortex. These results show that Prdm8 expression is tightly regulated in a spatio-temporal manner during neural development and mainly restricted to postmitotic neurons, except in the spinal cord.  相似文献   

3.
4.
The Norrie disease gene (Ndp) codes for a secreted protein, Norrin, that activates canonical Wnt signaling by binding to its receptor, Frizzled-4. This signaling system is required for normal vascular development in the retina and for vascular survival in the cochlea. In mammals, the pattern of Ndp expression beyond the retina is poorly defined due to the low abundance of Norrin mRNA and protein. Here, we characterize Ndp expression during mouse development by studying a knock-in mouse that carries the coding sequence of human placental alkaline phosphatase (AP) inserted at the Ndp locus (Ndp(AP)). In the CNS, Ndp(AP) expression is apparent by E10.5 and is dynamic and complex. The anatomically delimited regions of Ndp(AP) expression observed prenatally in the CNS are replaced postnatally by widespread expression in astrocytes in the forebrain and midbrain, Bergman glia in the cerebellum, and Müller glia in the retina. In the developing and adult cochlea, Ndp(AP) expression is closely associated with two densely vascularized regions, the stria vascularis and a capillary plexus between the organ of Corti and the spiral ganglion. These observations suggest the possibility that Norrin may have developmental and/or homeostatic functions beyond the retina and cochlea.  相似文献   

5.
6.
We have cloned and sequenced a full-length cDNA for the HMG box-containing, SRY-related gene Sox6 from mouse. The deduced protein sequence of Sox6 has considerable homology with that of the previously determined Sox5 sequence. It seems likely that these genes have diverged more recently than other members of the SOX gene family, although the two genes map to different chromosomes in the mouse. In common with Sox5, Sox6 is highly expressed in the adult mouse testis and the HMG domains of both proteins bind to the sequence 5'-AACAAT-3'. This suggests that the two genes may have overlapping functions in the regulation of gene expression during spermatogenesis in the adult mouse. However, Sox6 may have an additional role in the mouse embryo, where it is specifically expressed in the developing nervous system.  相似文献   

7.
Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.  相似文献   

8.
The expression pattern of Lmx1a, a LIM-homeodomain gene disrupted in the dreher mouse neurological mutant, is described during development. Lmx1a is predominantly expressed in the developing nervous system from embryonic day E8.5 to adulthood, in restricted areas. Major expression domains include the dorsal midline (roof plate) of the neural tube, the cortical hem, the otic vesicles, the developing cerebellum and the notochord. The Lmx1a expression pattern is therefore well correlated with the various aspects of the phenotype of the dreher mutant mice.  相似文献   

9.
10.
We isolated a chick homologue of BM88 (cBM88), a cell-intrinsic nervous system-specific protein and examined the expression of BM88 mRNA and protein in the developing brain, spinal cord and peripheral nervous system of the chick embryo by in situ hybridization and immunohistochemistry. cBM88 is widely expressed in the developing central nervous system, both in the ventricular and mantle zones where precursor and differentiated cells lie, respectively. In the spinal cord, particularly strong cBM88 expression is detected ventrally in the motor neuron area. cBM88 is also expressed in the dorsal root ganglia and sympathetic ganglia. In the early neural tube, cBM88 is first detected at HH stage 15 and its expression increases with embryonic age. At early stages, cBM88 expression is weaker in the ventricular zone (VZ) and higher in the mantle zone. At later stages, when gliogenesis persists instead of neurogenesis, BM88 expression is abolished in the VZ and cBM88 is restricted in the neuron-containing mantle zone of the neural tube. Association of cBM88 expression with cells of the neuronal lineage in the chick spinal cord was demonstrated using a combination of markers characteristic of neuronal or glial precursors, as well as markers of differentiated neuronal, oligodendroglial and astroglial cells. In addition to the spinal cord, cBM88 is expressed in the HH stage 45 (embryonic day 19) brain, including the telencephalon, diencephalon, mesencephalon, optic tectum and cerebellum. BM88 is also widely expressed in the mouse embryonic CNS and PNS, in both nestin-positive neuroepithelial cells and post-mitotic betaIII-tubulin positive neurons.  相似文献   

11.
To identify hypothesized missing components of the synaptic G alpha(o)-G alpha(q) signaling network, which tightly regulates neurotransmitter release, we undertook two large forward genetic screens in the model organism C. elegans and focused first on mutations that strongly rescue the paralysis of ric-8(md303) reduction-of-function mutants, previously shown to be defective in G alpha(q) pathway activation. Through high-resolution mapping followed by sequence analysis, we show that these mutations affect four genes. Two activate the G alpha(q) pathway through gain-of-function mutations in G alpha(q); however, all of the remaining mutations activate components of the G alpha(s) pathway, including G alpha(s), adenylyl cyclase, and protein kinase A. Pharmacological assays suggest that the G alpha(s) pathway-activating mutations increase steady-state neurotransmitter release, and the strongly impaired neurotransmitter release of ric-8(md303) mutants is rescued to greater than wild-type levels by the strongest G alpha(s) pathway activating mutations. Using transgene induction studies, we show that activating the G alpha(s) pathway in adult animals rapidly induces hyperactive locomotion and rapidly rescues the paralysis of the ric-8 mutant. Using cell-specific promoters we show that neuronal, but not muscle, G alpha(s) pathway activation is sufficient to rescue ric-8(md303)'s paralysis. Our results appear to link RIC-8 (synembryn) and a third major G alpha pathway, the G alpha(s) pathway, with the previously discovered G alpha(o) and G alpha(q) pathways of the synaptic signaling network.  相似文献   

12.
13.
The occurrence of vimentin, a specific intermediate filament protein, has been studied by immunoflourescence microscopy in tissue of adult and embryonic brain as well as in cell cultures from nervous tissue. By double imminofluorescence labeling, the distribution of vimentin has been compared with that of subunit proteins of other types of intermediate filaments (glial fibrillary acidic [GFA] protein, neurofilament protein, prekeratin) and other cell-type specific markers (fibronectin, tetanus toxin receptor, 04 antigen). In adult brain tissue, vimentin is found not only in fibroblasts and cells of larger blood vessels but also in ependymal cells and astrocytes. In embryonic brain tissue, vimentin is detectable as early as embryonic day 11, the earliest stage tested, and is located in radial fibers spanning the neural tube, in ventricular cells, and in blood vessels. At all stages tested, oligodendrocytes and neurons do not express detectable amounts of vimentin. In primary cultures of early postnatal mouse cerebellum, a coincident location of vimentin and GFA protein is seen in astrocytes, and both types of filament proteins are included in the perinuclear aggregates formed upon exposure of the cells to colcemid. In cerebellar cell cultures of embryonic-day-13 mice, vimentin is seen in various cell types of epithelioid or fibroblastlike morphology but is absent from cells expressing tetanus toxin receptors. Among these embryonic, vimentin-positive cells, a certain cell type reacting neither with tetanus toxin nor with antibodies to fibronectin or GFA protein has been tentatively identified as precursor to more mature astrocytes. The results show that, in the neuroectoderm, vimentin is a specific marker for astrocytes and ependymal cells. It is expressed in the mouse in astrocytes and glial precursors well before the onset of GFA protein expression and might therefore serve as an early marker of glial differentiation. Our results show that vimentin and GFA protein coexist in one cell type not only in primary cultures in vitro but also in the intact tissue in situ.  相似文献   

14.
Plexin-domain containing 2 (Plxdc2) is a relatively uncharacterised transmembrane protein with an area of nidogen homology and a plexin repeat (PSI domain) in its extracellular region. Here, we describe Plxdc2 expression in the embryonic mouse, with particular emphasis on the developing central nervous system. Using light microscopy and optical projection tomography (OPT), we analyse RNA in situ hybridization patterns and expression of two reporter genes, beta-geo (a fusion of beta-galactosidase to neomycin phosphotransferase) and placental alkaline phosphatase (PLAP) in a Plxdc2 gene trap mouse line (KST37; [Leighton, P.A., Mitchell, K.J., Goodrich, L.V., Lu, X., Pinson, K., Scherz, P., Skarnes, W.C., Tessier-Lavigne, M., 2001. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174-179]). At mid-embryonic stages (E9.5-E11.5) Plxdc2-betageo expression is prominent in a number of patterning centres of the brain, including the cortical hem, midbrain-hindbrain boundary and the midbrain floorplate. Plxdc2 is expressed in other tissues, most notably the limbs, lung buds and developing heart, as well as the spinal cord and dorsal root ganglia. At E15.5, expression is apparent in a large number of discrete nuclei and structures throughout the brain, including the glial wedge and derivatives of the cortical hem. Plxdc2-betageo expression is particularly strong in the developing Purkinje cell layer, especially in the posterior half of the cerebellum. The PLAP marker is expressed in a number of axonal tracts, including the posterior commissure, mammillotegmental tract and cerebellar peduncle. We compare Plxdc2-betageo expression in the embryonic brain with the much more restricted expression of the related gene Plxdc1 and with members of the Wnt family (Wnt3a, Wnt5a and Wnt8b) that show a striking overlap with Plxdc2 expression in certain areas.  相似文献   

15.
PurposeTo investigate the expression patterns of LIM Homeobox 6 (Lhx6) in the adult and developing mouse retina.MethodsThe Lhx6-GFP knock-in allele was used to activate constitutive expression of a GFP reporter in Lhx6 expressing cells. Double labeling with GFP and retinal markers in the mouse retina at postnatal day 56 (P56) was performed to identify the cell types expressing Lhx6. To determine the neuronal cell types that express Lhx6, double labeling with GFP and various retinal markers was employed in the differentiating retina at P7 and P15.ResultsGFP + Lhx6 lineage cells were determined in Brn3a + retinal ganglion cells (RGCs), ChAT + amacrine cells (ACs), and Islet-class LIM-homeodomain 1 (Isl1+) ACs in the mouse retina at P56. In the ganglion cell layer (GCL), Lhx6 was expressed in Brn3a + RGCs but not Brn3b + RGCs at P15. Moreover, in the inner nuclear layer (INL), Lhx6 was not expressed in Bhlhb5+ ACs at P15. However, Lhx6 was weakly expressed in Glyt1+ ACs and Pax6+ ACs, and strongly expressed in Isl1+ and ChAT + ACs at P15.ConclusionLhx6 was expressed in RGCs and ACs in both the adult and developing mouse retina.  相似文献   

16.
Retinogenesis is a developmental process that is tightly regulated both temporally and spatially and is therefore an excellent model system for studying the molecular and cellular mechanisms of neurogenesis in the central nervous system. Understanding of these events in vivo is greatly facilitated by the availability of mouse mutant models, including those with natural or targeted mutations and those with conditional knockout or forced expression of genes. This article reviews these genetic modifications and their contribution to the study of retinogenesis in mammals, with special emphasis on conditional gene targeting approaches.  相似文献   

17.
18.
Expression of the Otx gene, HprOtx, from the sea urchin Holopneustes purpurescens, is described during the development of the adult echinoid rudiment in the vestibula larva of this species. The adult rudiment forms directly after gastrulation in the vestibula larva since, unlike the pluteus larva of most other sea urchin species, it is not a feeding larva. The expression is described during the period from hatching to a late vestibula larva. At hatching, HprOtx is expressed throughout the ectoderm of the gastrula. A short time later, expression is absent from the ectoderm on the oral side of the gastrula where the vestibule will form. In an early vestibula larva, HprOtx is not expressed in the ectodermal floor of the vestibule but is expressed in an asymmetric pattern in the aboral ectoderm. As the vestibule invaginates, HprOtx is newly expressed in the ectodermal floor of the vestibule as it develops into the neuroectoderm that is the anlage of the circum-oral central nervous system. The expression is at first in the central part of the floor, then it extends outwards to the ectoderm around the five primary podia and to the epineural folds between the podia. The epineural folds later close to form the radial nerves and the circum-oral nerve ring. In a late vestibula larva, HprOtx is expressed in the radial nerves and the nerve ring. The expression of an Otx gene in the developing echinoid central nervous system is interpreted as an instance of conserved gene expression in echinoderm development.  相似文献   

19.
Polysialic acid (PSA) is a cell-surface glycan with an enormous hydrated volume that serves to modulate the distance between cells. This regulation has direct effects on several cellular mechanisms that underlie the formation of the vertebrate nervous system, most conspicuously in the migration and differentiation of progenitor cells and the growth and targeting of axons. PSA is also involved in a number of plasticity-related responses in the adult CNS, including changes in circadian and hormonal patterns, adaptations to pain and stress, and aspects of learning and memory. The ability of PSA to increase the plasticity of neural cells is being exploited to improve the repair of adult CNS tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号