首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrate synthase is an archetypal carbon-carbon bond forming enzyme. It promotes the conversion of oxaloacetate (OAA) to citrate by catalyzing the deprotonation (enolization) of acetyl-CoA, followed by nucleophilic attack of the enolate form of this substrate on OAA to form a citryl-CoA intermediate and subsequent hydrolysis. OAA is strongly bound to the active site and its alpha-carbonyl group is polarized. This polarization has been demonstrated spectroscopically, [(Kurz et al., Biochemistry 1985;24:452-457; Kurz and Drysdale, Biochemistry 1987;26:2623-2627)] and has been suggested to be an important catalytic strategy. Substrate polarization is believed to be important in many enzymes. The first step, formation of the acetyl-CoA enolate intermediate, is thought to be rate-limiting in the mesophilic (pig/chicken) enzyme. We have examined the effects of substrate polarization on this key step using quantum mechanical/molecular mechanical (QM/MM) methods. Free energy profiles have been calculated by AM1/CHARMM27 umbrella sampling molecular dynamics (MD) simulations, together with potential energy profiles. To study the influence of OAA polarization, profiles were calculated with different polarization of the OAA alpha-carbonyl group. The results indicate that OAA polarization influences catalysis only marginally but has a larger effect on intermediate stabilization. Different levels of treatment of OAA are compared (MM or QM), and its polarization in the protein and in water analyzed at the B3LYP/6-31+G(d)/CHARMM27 level. Analysis of stabilization by individual residues shows that the enzyme mainly stabilizes the enolate intermediate (not the transition state) through electrostatic (including hydrogen bond) interactions: these contribute much more than polarization of OAA.  相似文献   

2.
By using a combined quantum-mechanical and molecular-mechanical potential in molecular dynamics simulations, we have investigated the effects of the enzyme electric field of dihydrofolate reductase on the electronic polarization of its 5-protonated dihydrofolate substrate at various stages of the catalyzed hydride transfer reaction. Energy decomposition of the total electrostatic interaction energy between the ligands and the enzyme shows that the polarization effect is 4% of the total electrostatic interaction energy, and, significantly, it accounts for 9kcal/mol of transition state stabilization relative to the reactant state. Therefore it is essential to take account of substrate polarization for quantitative interpretation of enzymatic function and for calculation of binding free energies of inhibitors to a protein. Atomic polarizations are calculated as the differences in the average atomic charges on the atoms in gas phase and in molecular simulations of the enzyme; this analysis shows that the glutamate tail and the pterin ring are the highly polarized regions of the substrate. Electron density difference plots of the reactant and product complexes at instantaneous configurations in the enzyme active center confirm the inferences made on the basis of partial atomic charges.  相似文献   

3.
Permeabilized germlings from the dimorphic fungus Mucor rouxii were used for in situ measurement of protein kinase A (PKA) activation, to compare the results with those obtained in vitro at low or high (nonlinear) enzyme concentrations. The apparent total activity per cell when measured in situ is 5- to 10-fold lower than the in vitro measured activity in crude extracts from those cells. Polyamines and NaCl stimulate the activity in situ. The apparent relative specific activity of the in situ measured PKA toward four peptide substrates is similar to the results obtained in vitro at high holoenzyme concentration and not to those obtained with the free catalytic subunit. Saturation in the activation of PKA by cAMP in situ is attained at low concentrations (2 to 10 microM), while in vitro, at high holoenzyme concentration, no saturation was attained up to 1 mM cAMP (V. Zaremberg et al. Arch. Biochem. Biophys. 381, 74-82, 2000). Activation of PKA by site-selective cAMP analogs is assayed in situ and in vitro at two enzyme concentrations. Site B-selective cAMP analogs are good activators of PKA at low enzyme concentration in vitro but poor activators either at high enzyme concentration in vitro or in permeabilized cells. A physiological correlation with the behavior of site-selective analogs in situ is demonstrated in vivo when assaying the effect of increasing concentrations of site-selective cAMP analogs on the impairment of polarized growth of M. rouxii spores.  相似文献   

4.
Aquatic habitats are rich in polarized patterns that could provide valuable information about the environment to an animal with a visual system sensitive to polarization of light. Both cephalopods and fishes have been shown to behaviourally respond to polarized light cues, suggesting that polarization sensitivity (PS) may play a role in improving target detection and/or navigation/orientation. However, while there is general agreement concerning the presence of PS in cephalopods and some fish species, its functional significance remains uncertain. Testing the role of PS in predator or prey detection seems an excellent paradigm with which to study the contribution of PS to the sensory assets of both groups, because such behaviours are critical to survival. We developed a novel experimental set-up to deliver computer-generated, controllable, polarized stimuli to free-swimming cephalopods and fishes with which we tested the behavioural relevance of PS using stimuli that evoke innate responses (such as an escape response from a looming stimulus and a pursuing behaviour of a small prey-like stimulus). We report consistent responses of cephalopods to looming stimuli presented in polarization and luminance contrast; however, none of the fishes tested responded to either the looming or the prey-like stimuli when presented in polarization contrast.  相似文献   

5.
6.
Summary Water bugs (Notonecta glauca) were set into flight in a room with a homogeneously illuminated ceiling and a light-emitting platform on the floor. In these conditions polarized UV light from the platform was more effective in causing the animals to fly down to the surface of the platform than was unpolarized UV light several times as intense. Experiments with an array of baffles that restricted the directions from which the polarization film on the platform could be seen showed that the polarized UV light is effective in eliciting descent only when the e-vector is perpendicular to the median sagittal plane of the animal (horizontal). It can be concluded that polarized UV light with horizontal e-vector is distinguished, as a special sensory quality, from unpolarized UV light.Notonecta thus provides an example of true polarization vision.The special orthogonal arrangement of the microvilli in the rhabdomeres of the UV visual cells in the ventral part of the eye (cf. Schwind 1983 b and Schwind et al., in press) is suggestive with regard to polarization vision. The microvilli of the two UV visual cells in the ommatidia looking forward and down are horizontal and vertical, respectively, and hence could serve as a two-channel analyzer system capable of distinguishing the polarized UV light reflected by a water surface from unpolarized UV light.  相似文献   

7.
L-Methionine-dl-sulfoxide can support the growth of an Escherichia coli methionine auxotroph, suggesting the presence of an enzyme(s) capable of reducing the sulfoxide to methionine. This was verified by showing that a cell-free extract of E. coli catalyzes the conversion of methionine sulfoxide to methionine. This reaction required reduced nicotinamide adenine dinucleotide phosphate and a generating system for this compound. The specific activity of the enzyme increased during logarithmic growth and was maximal when the culture attained a density of about 10(9) cells per ml.  相似文献   

8.
To assess the role of skylight polarization in the orientation system of a day-migrating bird, Yellow-faced Honeyeaters (Lichenostomus chrysops, Meliphagidae) were tested in funnel cages for their directional preferences. In control tests in the natural local geomagnetic field under the clear natural sky, they preferred their normal migratory course. Manipulations of the e-vector by depolarizing the skylight or rotating the axis of polarization failed to affect the orientation as long as the natural geomagnetic field was present. When deprived of magnetic information, the birds continued in their normal migratory direction as long as they had access to information from the natural sky, or when either the sun or polarized light was available. However, when sun was hidden by clouds, depolarizers caused disorientation. — These findings indicate that polarized skylight can be used for orientation when no other known cues are available. However in the hierarchy of cues of this species, the polarization pattern clearly ranks lower than information from the geomagnetic field.  相似文献   

9.
10.
A new protocol for the stabilization of the quaternary structure of multimeric enzymes has been attempted using as model enzyme (tetrameric) L-asparaginase from Escherichia coli. Such strategy is based upon multisubunit covalent immobilization of the enzyme onto activated supports (agarose-glutaraldehyde). Supports activated with different densities of reactive groups were used; the higher the density of groups, the higher the stabilization attained. However, because of the complexity of that enzyme, even the use of the highest densities of reactive groups was not enough to encompass all four subunits in the immobilization process. Therefore, a further chemical intersubunit cross-linking with aldehyde-dextran was pursued; these derivatives displayed a fully stabilized multimeric structure. In fact, boiling the modified enzyme derivative in the presence of sodium dodecyl sulfate and beta-mercaptoethanol did not lead to release of any enzyme subunit into the medium. Such a derivative, prepared under optimal conditions, retained ca. 40% of the intrinsic activity of the free enzyme and was also functionally stabilized, with thermostabilization enhancements of ca. 3 orders of magnitude when compared with its soluble counterpart. This type of derivative may be appropriate for extracorporeal devices in the clinical treatment of acute leukemia and might thus bring about inherent advantages in that all subunits are covalently bound to the support, with a longer half-life and a virtually nil risk of subunit release into the circulating blood stream.  相似文献   

11.
Photobiomodulation therapy (PBMT) is a widely adopted form of phototherapy used to treat many chronic conditions that effect the population at large. The exact physiological mechanisms of PBMT remain unsolved; however, the prevailing theory centres on changes in mitochondrial function. There are many irradiation parameters to consider when investigating PBMT, one of which is the state of polarization. There is some evidence to show that polarization of red and near‐infrared light may promote different and/or increased biological activity when compared to otherwise identical non‐polarized light. These enhanced cellular effects may also be present when the polarized light is applied linear to the tissue direction. Herein, we synthesize the current experimental and clinical evidence pertaining to polarized photobiomodulation therapy; ultimately, to better inform future research into this area of phototherapy.  相似文献   

12.
Rapid bacterial detection and viability measurements have been greatly enhanced by recent advances in the use of fluorescent stains in cytometry. It has previously been shown that four physiological states can be distinguished : reproductively viable, metabolically active, intact and permeabilized. Previous sorting experiments have shown that not all intact cells readily grow, but some intact cells can grow even when they fail to show metabolic activity, as determined by esterase turnover. To circumvent the limitations imposed by active dye extrusion or cell dormancy on viability measurements used to date (e.g. enzyme activity or cell polarization), a fast triple fluorochrome staining procedure has been developed that takes account of these problems. This allows further cellular characterization of intact cells by : active exclusion of ethidium bromide (EB) (metabolically active cells), uptake of EB but exclusion of bis-oxonol (BOX) (de-energized but with a polarized cell membrane) and uptake of both dyes (depolarized). Permeabilized cells were identified by propidium iodide (PI) uptake. The method was validated using an electronically programmable single cell sorter (EPICS Elite®) and aged Salmonella typhimurium cells. Reproductive viability was determined by sorting single cells to their staining pattern directly onto agar plates. Most polarized cells could be recovered as well as a significant fraction of the depolarized cells, demonstrating that depolarization is a sensitive measure of cell damage but a poor indicator of cell death.  相似文献   

13.
The p21-activated kinases (PAKs) are effectors for the Rho-family GTPase Cdc42p. Here we define the in vivo function of the kinase activity of the budding yeast PAK Cla4p, using cla4 alleles that are specifically inhibited by a cell-permeable compound that does not inhibit the wild-type kinase. CLA4 kinase inhibition in cells lacking the partially redundant PAK Ste20p causes reversible SWE1-dependent cell-cycle arrest and gives rise to narrow, highly elongated buds in which both actin and septin are tightly polarized to bud tips. Inhibition of Cla4p does not prevent polarization of F-actin, and cytokinesis is blocked only in cells that have not formed a bud before inhibitor treatment; cell polarization and bud emergence are not affected by Cla4p inhibition. Although localization of septin to bud necks is restored in swe1Delta cells, cytokinesis remains defective. Inhibition of Cla4p activity in swe1Delta cells causes a delay of bud emergence after cell polarization, indicating that this checkpoint may mediate an adaptive response that is capable of promoting budding when Cla4p function is reduced. Our data indicate that CLA4 PAK activity is required at an early stage of budding, after actin polarization and coincident with formation of the septin ring, for early bud morphogenesis and assembly of a cytokinesis site.  相似文献   

14.
Immobilization of alcohol dehydrogenase (ADH) from Horse Liver inside porous supports promotes a dramatic stabilization of the enzyme against inactivation by air bubbles in stirred tank reactors. Moreover, immobilization of ADH on glyoxyl-agarose promotes additional stabilization against any distorting agent (pH, temperature, organic solvents, etc.). Stabilization is higher when using highly activated supports, they are able to immobilize both subunits of the enzyme. The best glyoxyl derivatives are much more stable than conventional ADH derivatives (e.g., immobilized on BrCN activated agarose). For example, glyoxyl immobilized ADH preserved full activity after incubation at pH 5.0 for 20h at room temperature and conventional derivatives (as well as the soluble enzyme) preserved less than 50% of activity after incubation under the same conditions. Moreover, glyoxyl derivatives are more than 10 times more stable than BrCN derivatives when incubated in 50% acetone at pH 7.0. Multipoint covalent immobilization, in addition to multisubunit immobilization, seems to play an important stabilizing role against distorting agents. In spite of these interesting stabilization factors, immobilization hardly promotes losses of catalytic activity (keeping values near to 90%). This immobilized preparation is able to keep good activity using dextran-NAD(+). In this way, ADH glyoxyl immobilized preparation seems to be suitable to be used as cofactor-recycling enzyme-system in interesting NAD(+)-mediated oxidation processes, catalyzed by other immobilized dehydrogenases in stirred tank reactors.  相似文献   

15.
结合偏振门技术和米氏散射理论,建立了组织模型的偏振散射差分光谱理论模型.计算分析了粒子群的平均尺寸、相对折射率变化时后向偏振散射差分光谱的特征.结果表明,利用偏振门技术测量的差分光谱主要是来自表层粒子的光信号,偏振散射差分光谱对粒子平均尺寸及相对折射率的变化比较敏感,随着粒子平均尺寸的增加,光谱振荡频率将增加,而随着相对折射率的减小,光谱的振幅减小,且差分光强值减小.该方法对于早期癌症检测具有潜在应用意义.  相似文献   

16.
Summary Epithelial-cell function requires cellular polarity in which apical membrane surfaces have unique characteristics and cellular organelles are stratified. Physiological investigations of endometrial, epithelial cells would be enhanced greatly by the ability of a method to polarize cells in culture. This study investigates the effects of different substrata on polarization of cultured bovine endometrial epithelial cells. Fetal bovine endometrial epithelial-cell lines were developed from explant outgrowth. Epithelial monolayers were subcultured onto amniotic membranes, Millicell-HA membranes, or Millicell-CM membranes coated with rat-tail collagen, Matrigel, laminin, Vitrogen,or fibronectin. Cultures on these substrata were maintained at the air/liquid interface. Cells grown on either collagen-coated or uncoated Milli-cell membranes also were maintained submerged in medium. Excellent polarized morphology was attained in cultures grown at the air/liquid interface on amniotic membranes and rat-tail collagen-coated membranes. Lectin-binding patterns, to apical membranes of polarized epithelial cell cultures paralleled patterns of binding to bovine endometrial surfaces in vivo. Cultures on rat-tail collagen were maintained for several weeks. These methods provide a valuable system for studying the endometrium in vitro.  相似文献   

17.
The actin cytoskeleton regulates exocytosis in all secretory cells. In neutrophils, Rac2 GTPase has been shown to control primary (azurophilic) granule exocytosis. In this report, we propose that Rac2 is required for actin cytoskeletal remodeling to promote primary granule exocytosis. Treatment of neutrophils with low doses (< or = 10 microM) of the actin-depolymerizing drugs latrunculin B (Lat B) or cytochalasin B (CB) enhanced both formyl peptide receptor- and Ca(2+) ionophore-stimulated exocytosis. Higher concentrations of CB or Lat B, or stabilization of F-actin with jasplakinolide (JP), inhibited primary granule exocytosis measured as myeloperoxidase release but did not affect secondary granule exocytosis determined by lactoferrin release. These results suggest an obligatory role for F-actin disassembly before primary granule exocytosis. However, lysates from secretagogue-stimulated neutrophils showed enhanced actin polymerization activity in vitro. Microscopic analysis showed that resting neutrophils contain significant cortical F-actin, which was redistributed to sites of primary granule translocation when stimulated. Exocytosis and actin remodeling was highly polarized when cells were primed with CB; however, polarization was reduced by Lat B preincubation, and both polarization and exocytosis were blocked when F-actin was stabilized with JP. Treatment of cells with the small molecule Rac inhibitor NSC23766 also inhibited actin remodeling and primary granule exocytosis induced by Lat B/fMLF or CB/fMLF, but not by Ca(2+) ionophore. Therefore, we propose a role for F-actin depolymerization at the cell cortex coupled with Rac-dependent F-actin polymerization in the cell cytoplasm to promote primary granule exocytosis.  相似文献   

18.
Cell polarization is a fundamental biological process implicated in nearly every aspect of multicellular development. The role of cell-extracellular matrix contacts in the establishment and the orientation of cell polarity have been extensively studied. However, the respective contributions of substrate mechanics and biochemistry remain unclear. Here we propose a believed novel single-cell approach to assess the minimal polarization trigger. Using nonadhered round fibroblast cells, we show that stiffness sensing through single localized integrin-mediated cues are necessary and sufficient to trigger and direct a shape polarization. In addition, the traction force developed by cells has to reach a minimal threshold of 56 ± 1.6 pN for persistent polarization. The polarization kinetics increases with the stiffness of the cue. The polarized state is characterized by cortical actomyosin redistribution together with cell shape change. We develop a physical model supporting the idea that a local and persistent inhibition of actin polymerization and/or myosin activity is sufficient to trigger and sustain the polarized state. Finally, the cortical polarity propagates to an intracellular polarity, evidenced by the reorientation of the centrosome. Our results define the minimal adhesive requirements and quantify the mechanical checkpoint for persistent cell shape and organelle polarization, which are critical regulators of tissue and cell development.  相似文献   

19.
Cell polarization is a fundamental biological process implicated in nearly every aspect of multicellular development. The role of cell-extracellular matrix contacts in the establishment and the orientation of cell polarity have been extensively studied. However, the respective contributions of substrate mechanics and biochemistry remain unclear. Here we propose a believed novel single-cell approach to assess the minimal polarization trigger. Using nonadhered round fibroblast cells, we show that stiffness sensing through single localized integrin-mediated cues are necessary and sufficient to trigger and direct a shape polarization. In addition, the traction force developed by cells has to reach a minimal threshold of 56 ± 1.6 pN for persistent polarization. The polarization kinetics increases with the stiffness of the cue. The polarized state is characterized by cortical actomyosin redistribution together with cell shape change. We develop a physical model supporting the idea that a local and persistent inhibition of actin polymerization and/or myosin activity is sufficient to trigger and sustain the polarized state. Finally, the cortical polarity propagates to an intracellular polarity, evidenced by the reorientation of the centrosome. Our results define the minimal adhesive requirements and quantify the mechanical checkpoint for persistent cell shape and organelle polarization, which are critical regulators of tissue and cell development.  相似文献   

20.
In this work Candida antarctica lipase type B (CALB) was immobilized on agarose and chitosan. The influence of activation agents (glycidol, glutaraldehyde and epichlorohydrin) and immobilization time (5, 24 and 72 h) on hydrolytic activity, thermal and alkaline stabilities of the biocatalyst was evaluated. Protein concentration and enzymatic activity in the supernatant were determined during the immobilization process. More active derivatives were attained when the enzymatic extract was first purified through dialysis. The highest activities achieved were: for agarose-glyoxyl (with glycidol), 845 U/g of gel, after 72 h of immobilization; for chitosan-glutaraldehyde and agarose-glutaraldehyde, respectively, 1209 U/g of gel and 2716 U/g of gel, after 5 h of immobilization. Thermal stability was significantly increased, when compared to the soluble enzyme: 20-fold for agarose-glyoxyl (with glycidol)-CALB, 18-fold for chitosan-glutaraldehyde-CALB and 21-fold for agarose-glutaraldehyde. The best derivative, 58-fold more stable than the soluble enzyme, was obtained when CALB was immobilized on chitosan activated in two steps, using glycidol and glutaraldehyde, 72 h immobilization time. The stabilization degree of the derivative increased with the immobilization time, an indication that a multipoint covalent attachment between enzyme and the support had really occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号