首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B A Sosnowski  J M Belote  M McKeown 《Cell》1989,58(3):449-459
Sex-specific alternative splicing of RNA from the Drosophila transformer gene involves competition between two 3' splice sites. In the absence of Sex-lethal activity (as in males), only one site functions; in the presence of Sex-lethal activity (as in females), both sites function. Information for sex-specific splice site choice is contained within the intron itself. Deletions of the splice site used in males lead to Sex-lethal-independent use of the otherwise female-specific site. The relative amounts of unspliced and spliced RNA derived from these mutant genes do not change with changes in Sex-lethal activity. Specific nucleotide changes in the non-sex-specific splice site do not affect splicing activity but eliminate Sex-lethal-induced regulation. A deletion removing material between the two splice sites does not eliminate sex-specific regulation, while a deletion of the female splice site leads to a female-specific increase in unspliced RNA. These results are consistent with a model in which female-specific factors block the function of the non-sex-specific 3' splice site.  相似文献   

2.
Intranuclear site of replication of adenovirus DNA   总被引:6,自引:0,他引:6  
Direct observation of the intranuclear site of newly replicated adenovirus DNA by electron microscope autoradiography indicates that the continuing replication of viral DNA does not occur in association with the nuclear envelope. This result was obtained in the absence of host cell DNA synthesis and was independent of variations in the length of exposure to radioactivity or the appearance of viral-induced changes in nuclear morphology.  相似文献   

3.
We have devised an in vitro splicing assay in which the mutually exclusive exons 2 and 3 of alpha-tropomyosin act as competing 3' splice sites for joining to exon 1. Splicing in normal HeLa cell nuclear extracts results in almost exclusive joining of exons 1 and 3. Splicing in decreased nuclear extract concentrations and decreased ionic strength results in increased 1-2 splicing. We have used this assay to determine the role of three constitutive pre-mRNA splicing factors on alternative 3' splice site selection. Polypyrimidine tract binding protein (PTB) was found to inhibit the splicing of introns containing a strong binding site for this factor. However, the inhibitory effect of PTB could be partially reversed if pre-mRNAs were preincubated with U2 auxiliary factor (U2AF) prior to splicing in PTB-supplemented extracts. For alpha-tropomyosin, regulation of splicing by PTB and U2AF primarily affected the joining of exons 1-3 with no dramatic increases in 1-2 splicing being detected. Preincubation of pre-mRNAs with SR proteins led to small increases in 1-2 splicing. However, if pre-mRNAs were preincubated with SR proteins followed by splicing in PTB-supplemented extracts, there was a nearly complete reversal of the normal 1-2 to 1-3 splicing ratios. Thus, multiple pairwise, and sometimes antagonizing, interactions between constitutive pre-mRNA splicing factors and the pre-mRNA can regulate 3' splice site selection.  相似文献   

4.
5.
During an adenovirus infection the expression of mRNA from late region L1 is temporally regulated at the level of alternative 3' splice site selection to produce two major mRNAs encoding the 52,55K and IIIa polypeptides. The proximal 3' splice site (52,55K) is used at all times of the infectious cycle whereas the distal site (IIIa) is used exclusively late after infection. We show that a single A branch nucleotide located at position -23 is used in 52,55K splicing and that two A's located at positions -21 and -22 are used in IIIa splicing. Both 3' splice sites were active in vitro in nuclear extracts prepared from uninfected HeLa cells. However, the efficiency of IIIa splicing was only approximately 10% of 52,55K splicing. This difference in splice site activity correlated with a reduced affinity of the IIIa, relative to the 52,55K, 3' splice site for polypyrimidine tract binding proteins. Reversing the order of 3' splice sites on a tandem pre-mRNA resulted in an almost exclusive IIIa splicing indicating that the order of 3' splice site presentation is important for the outcome of alternative L1 splicing. Based on our results we suggest a cis competition model where the two 3' splice sites compete for a common RNA splicing factor(s). This may represent an important mechanism by which L1 alternative splicing is regulated.  相似文献   

6.
The adenovirus late region 1 (L1) represents an example of an alternatively spliced gene where one 5' splice site is spliced to two alternative 3' splice sites, to produce two mRNAs; the 52,55K and IIIa mRNAs, respectively. Accumulation of the L1 mRNAs is temporally regulated during the infectious cycle. Thus, the proximal 3' splice site (52,55K mRNA) is used at all times during the infectious cycle whereas the distal 3' splice site (IIIa mRNA) is used exclusively late in infection. Here we show that in vitro splicing extracts prepared from late adenovirus-infected cells reproduces the virus-induced temporal shift from proximal to distal 3' splice site selection in L1 pre-mRNA splicing. Two stable intermediates in spliceosome assembly have been identified; the commitment complex and the pre-spliceosome (or A complex). We show that the transition in splice site activity in L1 alternative splicing results from an increase in the efficiency of commitment complex formation using the distal 3' splice site in extracts prepared from late virus-infected cells combined with a reduction of the efficiency of proximal 3' splice site splicing. The increase in commitment activity on the distal 3' splice site is paralleled by a virus-induced increase in A complex formation on the distal 3' splice site. Importantly, the virus-induced shift from proximal to distal L1 3' splice site usage does not require cis competition between the 52,55K and the IIIa 3' splice sites, but rather results from the intrinsic property of the two 3' splice sites which make them respond differently to factors in extracts prepared from virus-infected cells.  相似文献   

7.
8.
A family of mammalian protocadherin (Pcdh) proteins is encoded by three closely linked gene clusters (alpha, beta, and gamma). Multiple alpha and gamma Pcdh mRNAs are expressed in distinct patterns in the nervous system and are generated by alternative pre-mRNA splicing between different "variable" exons and three "constant" exons within each cluster. We show that each Pcdh variable exon is preceded by a promoter and that promoter choice determines which variable exon is included in a Pcdh mRNA. In addition, we provide evidence that alternative splicing of variable exons within a gene cluster occurs via a cis-splicing mechanism. However, virtually every variable exon can engage in trans-splicing with constant exons from another cluster, albeit at a far lower level.  相似文献   

9.
Alternative splicing of exon 7B in the hnRNP A1 pre-mRNA produces mRNAs encoding two proteins: hnRNP A1 and the less abundant A1B. We have reported the identification of several intron elements that contribute to exon 7B skipping. In this study, we report the activity of a novel element, conserved element 9 (CE9), located in the intron downstream of exon 7B. We show that multiple copies of CE9 inhibit exon 7B-exon 8 splicing in vitro. When CE9 is inserted between two competing 3' splice sites, a single copy of CE9 decreases splicing to the distal 3' splice site. Our in vivo results also support the conclusion that CE9 is a splicing modulator. First, inserting multiple copies of CE9 into an A1 minigene compromises the production of fully spliced products. Second, one copy of CE9 stimulates the inclusion of a short internal exon in a derivative of the human beta-globin gene. In this case, in vitro splicing assays suggest that CE9 decreases splicing of intron 1, an event that improves splicing of intron 2 and decreases skipping of the short internal exon. The ability of CE9 to act on heterologous substrates, combined with the results of a competition assay, suggest that the activity of CE9 is mediated by a trans-acting factor. Our results indicate that CE9 represses the use of the common 3' splice site in the hnRNP A1 alternative splicing unit.  相似文献   

10.
Alternative pre-mRNA splicing may be the most efficient and widespread mechanism to generate multiple protein isoforms from single genes. Here, we describe the genomic analysis of one of the most frequent types of alternative pre-mRNA splicing, alternative 5'- and 3'-splice-site selection. Using an EST-based alternative splicing database recording >47,000 alternative splicing events, we determined the frequency and location of alternative 5'- and 3'-splice sites within the human genome. The most common alternative splice sites used in the human genome are located within 6 nucleotides (nt) of the dominant splice site. We show that the EST database overrepresents alternative splicing events that maintain the reading frame, thus supporting the concept that RNA quality-control steps ensure that mRNAs that encode for potentially harmful protein products are destroyed and do not serve as templates for translation. The most frequent location for alternative 5'-splice sites is 4 nt upstream or downstream from the dominant splice site. Sequence analysis suggests that this preference is a consequence of the U1 snRNP binding sequence at the 5'-splice site, which frequently contains a GU dinucleotide 4 nt downstream from the dominant splice site. Surprisingly, approximately 50% of duplicated 3'-YAG splice junctions are subject to alternative splicing. This high probability of alternative 3'-splice-site activation in close proximity of the dominant 3'-splice site suggests that the second step of the splicing may be prone to violate splicing fidelity.  相似文献   

11.
Vesicular stomatitis virus (VSV) leader RNA and a synthetic oligodeoxynucleotide of the same sequence were found to inhibit the replication of adenovirus DNA in vitro. In contrast, the small RNA transcribed by the VSV defective interfering particle DI-011 did not prevent adenovirus DNA replication. The inhibition produced by leader RNA was at the level of preterminal protein (pTP)-dCMP complex formation, the initiation step of adenovirus DNA replication. Initiation requires the adenovirus pTP-adenovirus DNA polymerase complex (pTP-Adpol), the adenovirus DNA-binding protein, and nuclear factor I. Specific replication in the presence of leader RNA was restored when the concentration of adenovirus-infected or uninfected nuclear extract was increased or by the addition of purified pTP-Adpol or HeLa cell DNA polymerase alpha-primase to inhibited replication reactions. Furthermore, the activities of both purified DNA polymerases could be inhibited by the leader sequence. These results suggest that VSV leader RNA is the viral agent responsible for inhibition of adenovirus and possibly cellular DNA replication during VSV infection.  相似文献   

12.
13.
Initiation of adenovirus DNA replication.   总被引:3,自引:1,他引:3       下载免费PDF全文
In an attempt to study the mechanism of initiation of adenovirus DNA replication, an assay was developed to investigate the pattern of DNA synthesis in early replicative intermediates of adenovirus DNA. By using wild-type virus-infected cells, it was possible to place the origin of adenovirus type 2 DNA replication within the terminal 350 to 500 base pairs from either of the two molecular termini. In addition, a variety of parameters characteristic of adenovirus DNA replication were compared with those obtained in a soluble nuclear extract competent for viral DNA replication. It was observed that in vitro DNA replication, which is dependent on the exogenously added viral DNA-protein complex as its optimal template, occurs in a manner apparently indistinguishable from the situation in virus-infected cells. This includes the presence of proteinaceous material on the molecular termini of newly initiated viral DNA.  相似文献   

14.
Splicing of pre-messenger RNA is regulated differently in the brain compared with other tissues. Recognition of aberrations in splicing events that are associated with neurological disease has contributed to our understanding of disease pathogenesis in some cases. Neuron-specific proteins involved in RNA splicing and metabolism are also affected in several neurological disorders. These findings have begun to bridge what we know about the mechanisms regulating neuron-specific splicing and our understanding of neural function and disease.  相似文献   

15.
An adenovirus (Ad) DNA replication complex extracted from infected HeLa nuclei could be purified free of the bulk of intracellular DNA polymerase activity by sedimetation in neutral sucrose gradients. However, the replication complex still retained some alpha and gamma DNA-polymerase activity. Since this complex is inhibited by 2', 3' dideoxythymidine-5'-triphosphate (ddTTP), an inhibitor of DNA polymerase gamma, a functional role for this enzyme in Ad DNA replication is suggested. Similar inhibition by ddTTP in intact Ad infected nuclei and comparable inhibition of Ad DNA synthesis in whole cells by dideoxythymidine (ddThy) are consistent with a role for DNA polymerase gamma. Uninfected HeLa nuclei or whole cells are not similarly inhibited by ddTTP or DDThy respectively. Such data does not rule out an additional functional role for other DNA polymerases, and recent experiments from this laboratory (1) suggest that DNA polymerase alpha is also involved in Ad DNA synthesis.  相似文献   

16.
17.
18.
A yeast ACT1 intron in which both the first and last intron nucleotides are mutated, the /a-c/ intron, splices 10% as well as wild type. We selected for additional cis-acting mutations that improve the splicing of /a-c/ introns and recovered small deletions upstream of the 3' splice site. For example, deletion of nucleotides -9 and -10 upstream of the 3' splice site increased the splicing activity of the /a-c/ intron to 30% that of the wild-type ACT1 intron. To determine if the increased /a-c/ splicing was due to changes in intron spacing or sequence, we made mutations that mimicked the local sequence of the delta-9, -10 deletion without deleting any nucleotides. These mutants also increased /a-c/ splicing, indicating that the increased splicing activity was due to changes in intron sequence. The delta-9, -10 deletion was not allele specific to the /a-c/ intron, and improved the splicing efficiency of many mutant introns with step II splicing defects. To further define the sequences required for improved splicing of mutant introns, we randomized the region upstream of the ACT1 3' splice site. We found that almost all sequence alterations improved the splicing of the /a-c/ intron. We postulate that this sequence near the 3' end of the intron represses the splicing of mutant introns, perhaps by serving as the binding site for a negative splicing factor.  相似文献   

19.
20.
Factors influencing alternative splice site utilization in vivo.   总被引:41,自引:19,他引:22       下载免费PDF全文
To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号