首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endosymbiont-bearing trypanosomatids present a typical kDNA arrangement, which is not well characterized. In the majority of trypanosomatids, the kinetoplast forms a bar-like structure containing tightly packed kDNA fibers. On the contrary, in trypanosomatids that harbor an endosymbiotic bacterium, the kDNA fibers are disposed in a looser arrangement that fills the kinetoplast matrix. In order to shed light on the kinetoplast structural organization in these protozoa, we used cytochemical and immunocytological approaches. Our results showed that in endosymbiont-containing species, DNA and basic proteins are distributed not only in the kDNA network, but also in the kinetoflagellar zone (KFZ), which corresponds to the region between the kDNA and the inner mitochondrial membrane nearest the flagellum. The presence of DNA in the KFZ is in accordance with the actual model of kDNA replication, whereas the detection of basic proteins in this region may be related to the basic character of the intramitochondrial filaments found in this area, which are part of the complex that connects the kDNA to the basal body. The kinetoplast structural organization of Bodo sp. was also analyzed, since this protozoan lacks the highly ordered kDNA-packaging characteristic of trypanosomatid and represents an evolutionary ancestral of the Trypanosomatidae family.  相似文献   

2.
We comparatively examined the nutritional, molecular and optical and electron microscopical characteristics of reference species and new isolates of trypanosomatids harboring bacterial endosymbionts. Sequencing of the V7V8 region of the small subunit of the ribosomal RNA (SSU rRNA) gene distinguished six major genotypes among the 13 isolates examined. The entire sequences of the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes were obtained for phylogenetic analyses. In the resulting phylogenetic trees, the symbiont-harboring species clustered as a major clade comprising two subclades that corresponded to the proposed genera Angomonas and Strigomonas. The genus Angomonas comprised 10 flagellates including former Crithidia deanei and C. desouzai plus a new species. The genus Strigomonas included former Crithidia oncopelti and Blastocrithidia culicis plus a new species. Sequences from the internal transcribed spacer of ribosomal DNA (ITS rDNA) and size polymorphism of kinetoplast DNA (kDNA) minicircles revealed considerable genetic heterogeneity within the genera Angomonas and Strigomonas. Phylogenetic analyses based on 16S rDNA and ITS rDNA sequences demonstrated that all of the endosymbionts belonged to the Betaproteobacteria and revealed three new species. The congruence of the phylogenetic trees of trypanosomatids and their symbionts support a co-divergent host-symbiont evolutionary history.  相似文献   

3.
4.

Background  

The kinetoplast DNA (kDNA) of trypanosomatids consists of an unusual arrangement of circular molecules catenated into a single network. The diameter of the isolated kDNA network is similar to that of the entire cell. However, within the kinetoplast matrix, the kDNA is highly condensed. Studies in Crithidia fasciculata showed that kinetoplast-associated proteins (KAPs) are capable of condensing the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasitic protozoon that shows distinct patterns of kDNA condensation during their complex morphogenetic development. In epimastigotes and amastigotes (replicating forms) the kDNA fibers are tightly packed into a disk-shaped kinetoplast, whereas trypomastigotes (non-replicating) present a more relaxed kDNA organization contained within a rounded structure. It is still unclear how the compact kinetoplast disk of epimastigotes is converted into a globular structure in the infective trypomastigotes.  相似文献   

5.
Morphological, cultural, and biochemical criteria that have been used in describing lower trypanosomatids, genera Blastocrithidia, Crithidia, Leptomonas, Herpetomonas, Rhynchoidomonas, and Phytomonas are reviewed. Kinetoplast structure, carbohydrate utilization, electrophoretic mobilities of isoenzymes, and kDNA fingerprinting are among the recommended criteria for species differentiation. Temperature, pH, and osmolarity tolerance are useful growth parameters. Generic placement may be assisted by the determination of nitrogenous excretion products and ornithine-arginine cycle enzymes.  相似文献   

6.
Six species of abalones (Haliotidae) are found on the Korean coasts. Identification and characterization of these abalones are usually based on morphologic characters. In this research we compared the partial sequences of the mitochondrial 16S ribosomal RNA and cytochrome c oxidase subunit I genes to identify species using molecular data and to determine their phylogenetic relationships. Sequence alignments and phylogenetic analysis revealed that the 6 species fell into 2 distinct groups which were genetically distant from each other and exhibited little internal phylogenetic resolution. One group included Haliotis discus hannai, H. discus discus, H. madaka, and H. gigantea, while the other group contained H. diversicolor supertexta and H. diversicolor diversicolor. The 16S rRNA sequences were relatively more conserved than to the COI sequences, but both gene sequences provided sufficient phylogenetic information to distinguish among the 6 species of Pacific abalone, and thus could be valuable molecular characters for species identification.  相似文献   

7.
In this work, we present the sequences and a comparison of the glycosomal GAPDHs from a number of Kinetoplastida. The complete gene sequences have been determined for some species (Crithidia fasciculata, Herpetomonas samuelpessoai, Leptomonas seymouri, and Phytomonas sp), whereas for other species (Trypanosoma brucei gambiense, Trypanosoma congolense, Trypanosoma vivax, and Leishmania major), only partial sequences have been obtained by PCR amplification. The structure of all available glycosomal GAPDH genes was analyzed in detail. Considerable variations were observed in both their nucleotide composition and their codon usage. The GC content varies between 64.4% in L. seymouri and 49.5% in the previously sequenced GAPDH gene from Trypanoplasma borreli. A highly biased codon usage was found in C. fasciculata, with only 34 triplets used, whereas in T. borreli 57 codons were employed. No obvious correlation could be observed between the codon usage and either the nucleotide composition or the level of gene expression. The glycosomal GAPDH is a very well-conserved enzyme. The maximal overall difference observed in the amino acid sequences is only 25%. Specific insertions and extensions are retained in all sequences. The residues involved in catalysis, substrate, and inorganic phosphate binding are fully conserved, whereas some variability is observed in the cofactor-binding pocket. The implications of these data for the design of new trypanocidal drugs targeted against GAPDH are discussed. All available gene and amino acid sequences of glycosomal GAPDHs were used for a phylogenetic analysis. The division of the Kinetoplastida into two suborders, Bodonina and Trypanosomatina, was well supported. Within the letter group, the Trypanosoma species appeared to be monophyletic, whereas the other trypanosomatids form a second clade. Received: 23 February 1998/Accepted: 26 March 1998  相似文献   

8.
Trypanosoma evansi is a mammal generalist protozoon which causes negative effects on health and productivity in bovine and equine herds in South America, Europe, Asia and Africa. By molecular methods, we screened the presence of that parasite together with other trypanosome species in 105 bats of 10 species collected in arid zones of northern Venezuela. The first molecular approach was fluorescent fragment length barcoding (FFLB), which relies on amplification of relative small regions of rRNA genes (four loci) and fluorescence detection. By FFLB, 17 samples showed patterns of possible trypanosomatid infections. These samples were used to test presence of trypanosomes by PCR using the following DNA markers: V7–V8 SSU rRNA, gGAPDH and kDNA minicircle regions. Only in one individual of the nectar-feeding bat, Leptonycteris curasoae, we were able to amplify 1000 bp of the trypanosome kDNA minicircle. That PCR product was sequenced and the parasite species was determined by NCBI-BLAST and phylogenetic analysis. Both analyses showed that the minicircle sequence corresponds to Trypanosoma evansi. The phylogenetic analysis of the sequence obtained in this study clustered with a T. evansi sequence obtained in a Venezuelan capybara, Hydrochoerus hydrochaeris, and distant of others two T. evansi sequences obtained in a Colombian capybara and horse. This result supports the hypothesis of multiple origins of T. evansi in South America.  相似文献   

9.
Trypanosomatid mitochondrial DNA (kDNA) possesses thousands of copies of small circular molecules called minicircles. Due to a high level of nucleotide polymorphism among copies, sequence alignment for species or strain characterization is not appropriate. In this work we report dinucleotide absolute frequency as a method to analyze minicircle sequences heterogeneity in trypanosomatids. Using Trypanosoma rangeli and Leishmania guyanensis minicircles as example of sequence length heterogeneity, we show that dinucleotide frequency of minicircles whose length variation is less than to 10% is relatively constant. Dinucleotide frequencies in Leishmania genus point out three clusters of predominant dinucleotide profiles: GG/TT/TG for Old World species; ii) TT/AA/TA for New World species and iii) TT/GG(AA) TA(AT) for Sauroleishmania. Trypanosoma species displayed broad range composition and the highest frequency values. Their dinucleotide profile appears to be species specific, except for African trypanosomes which exhibit similar composition. The low number of sequences from Crithidia, Herpetomonas, Phytomonas and Wallaceina did not allow a generalized analysis, however some species present highly similar compositional profile, e.g., Wallaceina species. Distinct signatures for Trypanosomatidae family members can be generated by using values of absolute frequencies, range and composition of most/least frequent dinucleotides from minicircles. Each species can be graphically represented by a diagram of frequencies along with a box plot of summary statistics.  相似文献   

10.
The sequence of mitochondrial A6 (MURF4) was compared for several trypanosomatids in order to assess the reduction of the edited domain (ED). The association between the ED reduction and the phylogenetic position of a species proved to be less tight than believed earlier. Compared with digenetic species, monogenetic ones more often displayed ED reduction and had smaller ED.  相似文献   

11.
To study phylogenetic relationships among Okinawan soft corals of the genus Clavularia, the ribosomal internal transcribed spacer sequences of host corals and the 18S rDNA sequences of symbiotic algae were analyzed. The molecular phylogenetic trees of hosts showed that a prostanoid-containing species, Clavularia viridis, is deeply diverged from other species of Clavularia which do not biosynthesize the prostanoids as the main secondary metabolites. Comparison of their trees suggested poor phylogenetic concordance between hosts and symbionts.  相似文献   

12.
A number of species in the plant pathogen genus Armillaria are known from South America where they cause root rot disease on a wide variety of hosts. Knowledge pertaining to phylogenetic relationships of these species with those of other Armillaria species is almost non-existent. In addition, very few cultures representing these species are available, making DNA-based phylogenetic analyses impossible. The aim of this study was to characterise a collection of Armillaria isolates from the Patagonian Andes using DNA sequences and to determine their phylogenetic relationships with other Armillaria species. DNA sequences were obtained from the internal transcribed regions (ITS1, 5.8S and ITS4) and ribosomal large subunit (LSU) gene and used in phylogenetic analyses. Phylogenetic trees generated from the sequences separated the Armillaria isolates into four lineages. Lineages I and II represented A. novae-zelandiae and A. luteobubalina, respectively. Isolates belonging to A. novae-zelandiae from Malaysia, New Zealand, Australia and South America showed considerable intra-clade sub-structure. Lineages III and IV are probably distinct species and are most closely related to A. hinnulea and an unnamed species isolated from New Zealand and Kenya. This is the first comprehensive study of the phylogenetic relationships of Armillaria species from Patagonia and it provides a foundation for future research in this region.  相似文献   

13.
《Journal of bryology》2013,35(3):186-196
Abstract

Leptodon corsicus (Neckeraceae) is described as the first endemic moss species from Corsica. It strikingly differs from the other species of the genus by the lack of a dense and pinnate to bipinnate mode of branching; about 10 times smaller shoots that do not inroll upon drying; the lack of paraphyllia; and few, occasional small pseudoparaphyllia. Due to its small size and several leaf characters, L. corsicus shares at first glance more similarities with Homalia webbiana and Neckera besseri than with Leptodon. Yet, phylogenetic analysis of chloroplast and nuclear DNA sequences unambiguously shows that L. corsicus is deeply nested within L. smithii. The numerous morphological characters that distinguish L. corsicus from L. smithii cannot be attributed to plasticity. Consequently, we interpret the phylogenetic position of L. corsicus as the result of a recent speciation process, involving mutations at one or a few coding loci or differences in gene expression, which have tremendous consequences for phenotypic appearance, and retention of ancestral polymorphism in the non-coding sequences used for phylogenetic reconstruction. Such an explanation might also apply to other species of mosses, which exhibit a striking morphology, and yet share identical non-coding sequences with the common species they derive from. The notion of species in mosses is discussed in this context.  相似文献   

14.
A phylogenetic analysis of P transposable elements in the Drosophila obscura species group is described. Multiple P sequences from each of 10 species were obtained using PCR primers that flank a conserved region of exon 2 of the transposase gene. In general, the P element phylogeny is congruent with the species phylogeny, indicating that the dominant mode of transmission has been vertical, from generation to generation. One manifestation of this is the distinction of P elements from the Old World obscura and subobscura subgroups from those of the New World affinis subgroup. However, the overall distribution of elements within the obscura species group is not congruent with the phylogenetic relationships of the species themselves. There are at least four distinct subfamilies of P elements, which differ in sequence from each other by as much as 34%, and some individual species carry sequences belonging to different subfamilies. P sequences from D. bifasciata are particularly interesting. These sequences belong to two subfamilies and both are distinct from all other P elements identified in this survey. Several mechanisms are postulated to be involved in determining phylogenetic relationships among P elements in the obscura group. In addition to vertical transmission, these include retention of ancestral polymorphisms and horizontal transfer by an unknown mating-independent mechanism.  相似文献   

15.
16.
The usefulness of molecular phylogenetic studies has increased remarkably as the quantity and quality of available DNA sequences has increased. When compared with the progress that has occurred in angiosperms and animals, there have been relatively few target DNA regions identified for use in taxonomic studies of brown algae. Therefore, in this study, we developed a new set of primers to amplify Rubisco small subunit (rbcS) gene sequences and determined the rbcS gene sequences of various species of brown algae including those belonging to Dictyotales, Ectocarpales, Fucales and Sphacelariales. The level of sequence variations in the rbcS gene varied according to the brown algal lineages. When focusing on the relationship of species within the genus Sargassum, the rbcS gene sequences provided useful information regarding the phylogenetic relationship among sections of the subgenus Bactrophycus. Based on the broad applicability and phylogenetic utility of the rbcS gene, we suggest that the sequence be used as a new target region for the molecular systematics of brown algae.  相似文献   

17.
The partial sequences of 16S rRNA and cytochrome c oxidase subunit I (COI) mitochondrial genes were analyzed for species identification and phylogenetic relationships among the commercially important Indian sciaenids (Otolithes cuvieri, Otolithes ruber, Johnius dussumieri, Johnius elongatus, Johnieops vogleri, Otolithoides biauritus and Protonibea diacanthus). Sequence analysis of both genes revealed that the seven species fell into three distinct groups, which were genetically distant from each other and exhibited identical phylogenetic resolution. Partial sequences of both the genes provided sufficient phylogenetic information to distinguish the seven sciaenids indicating the usefulness of mtDNA-based approach in species identification.  相似文献   

18.
In eight Holarctic populations of two typical chironomid sibling species of the plumosus group, Chironomus entisandChironomus plumosus, nucleotide sequences of mitochondrial (cytb) and nuclear (gb2b) gene regions were examined. The phylogenetic trees reflecting the evolutionary histories of the nuclear and mitochondrial markers exhibited significant differences. On the tree based on the nuclear gene sequences the populations clustered according to their species affiliation, whereas on the tree based on the mitochondrial gene sequences the populations were grouped according to their geographic position. This discrepancy is probably explained by mitochondrial gene flow between sympatric species with incomplete reproductive isolation (sibling species). Based on our results together with the earlier data on nuclear and mitochondrial gene sequences of some other species from the phylogenetic group plumosus, a scheme of phylogenetic relationships within this group is proposed. This scheme is in many ways different from the traditional view on the evolutionary relationships among species of the plumosus group.  相似文献   

19.
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10?bp sequence) and CSB-2 (8?bp sequence) present lower interspecies homology, while CSB-3 (12?bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257?bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号