首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F. Paques  B. Bucheton    M. Wegnez 《Genetics》1996,142(2):459-470
In a previous report we described rearrangements occurring at a high rate (30% of the progeny of dysgenic flies) within a cluster of 5S genes internal to a P element. These events were characterized as precise amplifications and deletions of 5S units. Here we analyze recombination events within P elements containing two repeated arrays of 5S genes flanking a central white gene. Deletions (50%) and duplications (3%) of the white gene together with various amounts of flanking 5S genes were observed. These recombinations occur preferentially between the most external 5S units of P transposons. Such rearrangements could be favored by interactions between the proteins bound to the P terminal sequences.  相似文献   

2.
3.
A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.  相似文献   

4.
5.
Fifty-eight hybrids were analyzed for their phenotypic stability, presence and nature of cryptic trp alleles and by P22-mediated transduction to yield percent homologies. The hybrids fall into 5 distinguishable classes: a haploid class in which selected E. coli genes replace equivalent sites in the S. typhimurium chromosome; three merodiploid classes in which the selected E. coli genes are integrated at novel sites in the S. typhimurium chromosome-on the same transducing fragment as the female genes selected against, with or without cryptic damage to a nearby gene, or not on the same transducing fragment; and one class in which recombination has not taken place and the E. coli DNA is presumed to be an exogenote. The homology values are heterogeneous and do not permit an accurate determination of the relative frequency of incorporation of the integrated male genetic material. A further study of 20 hybrids indicates that genetic rearrangements can occur in the hybrids.  相似文献   

6.
The organization of the 5S rRNA genes in the MACronuclear genome of Tetrahymena thermophila was examined during MAC development and replication. The 5S genes are arranged in several tandem arrays of alternating transcribed and spacer sequences in both MICronucleus and MAC. The number of EcoRI fragments bearing 5S gene clusters is similar in MIC and MAC. Most fragments occur in both the MIC and newly formed MAC genomes, a few being MIC-limited and a few MAC-limited. The same rearrangements are seen in the MACs of all four caryonides of a mating pair, and most rearrangements are seen in the newly formed MACs of different inbred strains. During replication of the MAC about half the fragments bearing 5S gene clusters disappear in different cell lines, and new fragments containing 5S genes appear. These fragments differ in size from those present in the MIC or newly formed MAC. These alterations occur in the MACs of all strains except strain B, which is more resistant to vegetative rearrangement. The losses and gains of fragments occur during clonal propagation of cell lines. The process begins by 35 fissions following conjugation, but once an alteration occurs, it is stably propagated. Clonal variation occurs with respect to which losses and gains occur, although a nonrandom distribution is seen among cell clones. We conclude that the alterations in MAC fragment size occur at two stages in the life cycle of Tetrahymena. The first stage occurs during conjugation, when the MAC develops from the MIC. The second stage becomes manifest during vegetative growth, when DNA replication occurs in the MAC and daughter molecules are distributed “amitotically” to daughter nuclei. The two-stage character to MAC alterations for the 5S genes is interpreted in terms of the two steps previously described for MAC differentiation: determination and phenotypic assortment. Possible molecular mechanisms are also discussed.  相似文献   

7.
Mieczkowski PA  Lemoine FJ  Petes TD 《DNA Repair》2006,5(9-10):1010-1020
Homologous recombination between dispersed repeated genetic elements is an important source of genetic variation. In this review, we discuss chromosome rearrangements that are a consequence of homologous recombination between transposable elements in the yeast Saccharomyces cerevisiae. The review will be divided into five sections: (1) Introduction (mechanisms of homologous recombination involving ectopic repeats), (2) Spontaneous chromosome rearrangements in wild-type yeast cells, (3) Chromosome rearrangements induced by low DNA polymerase, mutagenic agents or mutations in genes affecting genome stability, (4) Recombination between retrotransposons as a mechanism of genome evolution, and (5) Important unanswered questions about homologous recombination between retrotransposons. This review complements several others [S. Liebman, S. Picologlou, Recombination associated with yeast retrotransposons, in: Y. Koltin, M.J. Leibowitz (Eds.), Viruses of Fungi and Simple Eukaryotes, Marcel Dekker Inc., New York, 1988, pp. 63-89; P. Lesage, A.L. Todeschini, Happy together: the life and times of Ty retrotransposons and their hosts, Cytogenet. Genome Res. 110 (2005) 70-90; D.J. Garfinkel, Genome evolution mediated by Ty elements in Saccharomyces, Cytogenet. Genome Res. 110 (2005) 63-69] that discuss genomic rearrangements involving Ty elements.  相似文献   

8.
9.
10.
Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid.   总被引:13,自引:8,他引:5  
Different structural changes of the Sym plasmid were found in a Rhizobium phaseoli strain that loses its symbiotic phenotype at a high frequency. These rearrangements affected both nif genes and Tn5 mob insertions in the plasmid, and in some cases they modified the expression of the bacterium's nodulation ability. One of the rearrangements was more frequent in heat-treated cells, but was also found under standard culture conditions; other structural changes appeared to be related to the conjugal transfer of the plasmid.  相似文献   

11.
An accurate physical map of the location of the 5S and the 18S-5.8S-25S rRNA genes and a repetitive DNA sequence has been produced on Aegilops umbellulata Zhuk., (2n = 2x = 14) chromosomes by in situ hybridization. Chromosome morphology together with the hybridization pattern of pSc119.2, a DNA sequence from rye, allowed identification and discrimination of different chromosomes; pSc119.2 hybridizes with all Ae. umbellulata chromosomes at the telomeres, except for the short arm of chromosome 6U, and shows intercalary sites on the long arms of chromosomes 6U and 7U. The 5S and 18S-25S rDNA have been mapped physically only on the short arms of chromosomes 1U and 5U. On chromosome 1U the order of the genes is 5S rDNA subterminal and 18S-25S rDNA more proximal, while on chromosome 5U the position of the genes is reversed. The relative order of the genes, together with the hybridization pattern of the pSc119.2, is useful in identifying whole chromosomes or chromosome segments from Ae. umbellulata in recombinant or addition lines with wheat. The data help link the physical organization of chromosomes to the genetic map. Other members of the Triticeae vary in the presence and order of the 5S and 18S-25S rDNA sequences on groups 1 and 5, indicating multiple and complex evolutionary rearrangements of the chromosome arms.  相似文献   

12.
13.
14.
In the present study the chromosome distribution of the 5S rDNA loci and its relation to the major rDNA genes were investigated in three Coregonid species (Salmonidae): Coregonus lavaretus, Coregonus peled and Coregonus albula, a family which has experienced large karyotype rearrangements along its evolution starting from a tetraploid ancestor. 5S PRINS/CMA3 sequential staining together with previous data enabled us to locate 5S rRNA genes and nucleolar organizer regions (NORs) in the three species analyzed. PRINS revealed the 5S rDNA cluster at the distal part of the long arm of a similar submetacentric chromosome pair in the three species. Our data indicate that 5S rDNA clusters have probably conserved chromosomal location in the genus Coregonus, whereas 45S rDNA (NOR) sites are clearly differentiated, from a single locus in C. peled, to multiple loci in C. lavaretus and highly polymorphic multichromosomal location in C. albula.  相似文献   

15.
Fanconi anemia (FA) is a rare autosomal recessive disease manifested by bone-marrow failure and an elevated incidence of cancer. Cells taken from patients exhibit spontaneous chromosomal breaks and rearrangements. These breaks and rearrangements are greatly elevated by treatment of FA cells with the use of DNA cross-linking agents. The FA complementation group D gene (FANCD) has previously been localized to chromosome 3p22-26, by use of microcell-mediated chromosome transfer. Here we describe the use of noncomplemented microcell hybrids to identify small overlapping deletions that narrow the FANCD critical region. A 1.2-Mb bacterial-artificial-chromosome (BAC)/P1 contig was constructed, bounded by the marker D3S3691 distally and by the gene ATP2B2 proximally. The contig contains at least 36 genes, including the oxytocin receptor (OXTR), hOGG1, the von Hippel-Lindau tumor-suppressor gene (VHL), and IRAK-2. Both hOGG1 and IRAK-2 were excluded as candidates for FANCD. BACs were then used as probes for FISH analyses, to map the extent of the deletions in four of the noncomplemented microcell hybrid cell lines. A narrow region of common overlapping deletions limits the FANCD critical region to approximately 200 kb. The three candidate genes in this region are TIGR-A004X28, SGC34603, and AA609512.  相似文献   

16.
Effect of chromosomal rearrangements on the expression of mutations was studied in Drosophila melanogaster regulatory genes. These were facultative dominant lethals and recessive lethals on the X chromosome obtained by the classical Muller-5 method. Chromosomal rearrangements drastically changed the expression of regulatory gene mutations. Rearrangements either caused the lethal effect of mutations or suppressed the already present lethality. The action of rearrangements exhibited the maternal or paternal effect. Irrespective of the presence in the genome of mutations at regulatory genes, a rearrangement acted as a factor decreasing fertility of the organism. The rearrangement effect is identical to the expression of regulatory genes per se. It is concluded that the chromosomal rearrangement affects the examined regulatory genes indirectly through a change in the operation of regulatory genes located within the rearrangement. Thus, rearrangements gain great importance for the definition of the pattern of genome functional activity. Widespread distribution of rearrangements in individual genotypes and their effectivity in the process of speciation are thus explained.  相似文献   

17.
Apomixis in plants is a form of clonal reproduction through seeds. A BAC clone linked to apomictic reproduction in Paspalum simplex was used to locate the apomixis locus on meiotic chromosome preparations. Fluorescent in situ hybridisation revealed the existence of a single locus embedded in a heterochromatin-poor region not adjacent to the centromere. We report here for the first time information regarding the sequencing of a large DNA clone from the apomixis locus. The presence of two genes whose rice homologs were mapped on the telomeric part of the long arm of rice chromosome 12 confirmed the strong synteny between the apomixis locus of P. simplex with the related area of the rice genome at the map level. Comparative analysis of this region with rice as representative of a sexual species revealed large-scale rearrangements due to transposable elements and small-scale rearrangements due to deletions and single point mutations. Both types of rearrangements induced the loss of coding capacity of large portions of the “apomictic” genes compared to their rice homologs. Our results are discussed in relation to the use of rice genome data for positional cloning of apomixis genes and to the possible role of rearranged supernumerary genes in the apomictic process of P. simplex. Ornella Calderini and Song B. Chang have contributed equally to this article  相似文献   

18.
G Gargiulo  F Razvi  A Worcel 《Cell》1984,38(2):511-521
Active minichromosomes assembled on injected 5S RNA gene clones are stable in Xenopus oocytes; endogenous 5S DNA specific factor(s) are required for their assembly. When somatic-type and oocyte-type 5S RNA gene clones are coinjected, the somatic genes are assembled into active minichromosomes, while most of the oocyte genes are assembled into inactive ones. The differential 5S RNA gene expression, which mimics that in somatic cells, appears to result from titration of 5S DNA specific factor(s) by the competing somatic 5S DNA, followed by histone mediated assembly of inactive chromatin on the oocyte 5S DNA. Stable minichromosomes are also assembled on a cloned histone H4 gene; again, intragenic DNA rearrangements affect the efficiency of assembly of active chromatin and differential gene expression occurs after coinjection of two or more H4 DNA constructs. We suggest that the H4 DNA molecules also compete for limiting quantities of specific DNA binding factor(s) required for the assembly of active H4 gene chromatin.  相似文献   

19.
Summary The 18S and 5S ribosomal RNA genes are separated by a 582-nucleotide-long spacer region in the Oenothera mitochondrial genome. The 5S rRNA gene is 7 bp shorter than the maize and 3 bp shorter than the wheat sequences due to a 4 bp deletion in a side arm of the secondary structure model. The 18S rRNA molecule can be folded analogously to the maize and wheat mitochondrial and Escherichia coli models for this rRNA. Most of the sequence variations between the wheat and Oenothera molecules are located in the variable domains identified for the wheat 18S rRNA.The comparison of the 18S rRNA from the mitochondria of Oenothera as a representative of dicotyledonous plants with that of the monocotyledons wheat and maize provides an indication of the rate of diversity in higher plant mitochondrial genes and gives direct evidence for sequence rearrangements within the 18 S rRNA genes.  相似文献   

20.
Comparative RFLP mapping has revealed extensive conservation of marker order in different grass genomes. However, microcolinearity studies at the sequence level have shown rapid genome evolution and many exceptions to colinearity. Most of these studies have focused on a limited size of genomic fragment and the extent of microcolinearity over large distances or across entire genomes remains poorly characterized in grasses. Here, we have investigated the microcolinearity between the rice genome and a total of 1,500 kb from physical BAC contigs on wheat chromosome 1AS. Using ESTs mapped in wheat chromosome bins as an additional source of physical data, we have identified 27 conserved orthologous sequences between wheat chromosome 1AS and a region of 1,210 kb located on rice chromosome 5S. Our results extend the orthology described earlier between wheat chromosome group 1S and rice chromosome 5S. Microcolinearity was found to be frequently disrupted by rearrangements which must have occurred after the divergence of wheat and rice. At the Lr10 orthologous loci, microrearrangements were due to the insertion of mobile elements, but also originated from gene movement, amplification, deletion and inversion. These mechanisms of genome evolution are at the origin of the mosaic conservation observed between the orthologous regions. Finally, in silico mapping of wheat genes identified an intragenomic colinearity between fragments from rice chromosome 1L and 5S, suggesting an ancestral segmental duplication in rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号