首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Amylase programming during the life cycle of Myxococcus coralloides   总被引:2,自引:2,他引:0  
Starch induces Myxococcus coralloides to secrete amylase. Amylase production has been observed during various stages of the life cycle of this myxobacterium both in liquid and solid media. Secretion was very high during vegetative growth at the end of the exponential growth phase in all media. During myxospore formation (glycerol-induced and fruiting-body formation) amylase activity decreased and finally ceased in the mature myxospores. During germination of glycerol-induced myxospores and fruiting-body myxospores a progressive increase in this activity was observed.  相似文献   

2.
Rhizoctonia bataticola produced the highest amounts of amylase in medium containing starch than that lacking starch within the 10 days of culture. Doubling the concentration of starch in the growth medium resulted in a near doubling of the amylase activity. Amylase production by the fungus is related to the type of carbon source in the medium with maximum amylase produced in medium containing starch. The maximum activity of the enzyme was detected in extracellular filtrates obtained from 4 days cultures. After this period, amylase activity decreased at first, and then increased through the 10 days incubation period. The fungus produced maximum levels of amylase prior to attainment of maximum mycelial biomass. Peak activity of the extracellular amylase was recorded at a temperature and pH range of 20–25°C and 4–5 respectively. The role of the exoenzyme in the deterioration of stored food products and its possible use in industrial fermentation processes are discussed.  相似文献   

3.
M.E.FÁREZ-VIDAL, A. FERNÁNDEZ-VIVAS, F. GONZÁLEZ AND J.M. ARIAS. 1995. The extracellular amylase activity from Myxococcus coralloides D was purified by Sephacryl S-200 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-25. The molecular weight was estimated by SDS-PAGE and by gel filtration as 22.5 kDa. The optimum temperature was 45°C. The pH range of high activity was between 6.5 and 8.5, with an optimum at pH 8.0. Activity was strongly inhibited by Hg2+, Zn2+, Cu2+, Ag+, Pb2+, Fe2+ and Fe3+, EDTA and glutardialdehyde, but was less affected by Ni2+ and Cd2+. Li+, Mg2+, Ba2+, Ca2+, N -ethylmaleimide, carbodiimide and phenyl methyl sulphonyl fluoride had almost no affect. The K m (45°C, pH 8) for starch hydrolysis was 2.0 times 10-3 gl-1. Comparison of the blue value-reducing curves with the time of appearance of maltose identified the enzyme produced by M. coralloides D as an α-amylase.  相似文献   

4.
嗜盐碱性淀粉酶产生条件和性质的初步研究   总被引:10,自引:0,他引:10  
从我国内蒙古自治区察汗淖碱湖分离到一株能产胞外嗜盐碱性淀粉酶的极端嗜盐嗜碱杆菌(Natronobacterium sp.)C-212,该菌产酶的最适pH和NaCl浓度分别为9.5和20%,最适碳源为可溶性淀粉,氮源为复合蛋白胨.酶反应最适温度为50℃,pH为8.5,NaCl浓度为2.6mol/L,该酶在pH9.5最稳定,NaCl可增加酶的热稳定性,酶降解可溶性淀粉的主要产物为葡萄糖、麦芽糖、麦芽三糖及其他寡糖.  相似文献   

5.
Amylase activity of 30 strains of Staphylococcus spp. was determined by Tryptic Soy Agar on supplemented with 1.0% starch as the substrate. After incubation (time incubation 24 h or 168 h), the plates were flooded with Lugol solution. A clear zone around the colonies indicated amylase activity. The 23 (76.7%) strains CNS demonstrated the amylase activity. It was observed that 17 (80.9%) strains of S. epidermidis, and 6 (66.7%) strains non-S. epidermidis, starch hydrolyzed. Amylase production depends of time incubation (frequently 168 h) and growth atmosphere (frequently oxygen atmosphere)  相似文献   

6.
Amylase production by three isolates ofMyrothecium roridum under different cultural conditions was studied. Starch followed by dextrin induced maximum amylase production (dextrinizing and saccharifying) by all the three isolates. Glucose was a poor substrate for the production of amylases. Bitter gourd isolate was a comparatively more efficient producer of amylases than the other two isolates. Addition of glucose to the starch medium resulted in a repression of amylases. Urea was a good source of nitrogen for induction of dextrinizing amylase in bitter gourd and pearl millet isolates.l-Asparagine,l-tyrosine were good sources of nitrogen for induction of saccharifying amylase in bitter gourd, water melon and pearl millet isolate, respectively. With a few exceptions, dextrinizing amylase production was inhibited by gibberellic acid, cycocel, calcium chloride and calcium sulfate, while these substances stimulated saccharifying-amylase production. No correlation could be observed between amylase production and vegetative growth. Amylases of all the three isolates ofM. roridum were characterized.  相似文献   

7.
Amylase activity extracted from tulip ( Tulipa gesneriana L. cv. Apeldoorn) bulbs that had been stored for 6 weeks at 4°C was resolved to 3 peaks by anion-exchange chromatography on diethylaminoethyl-Sephacel. These 3 amylases exhibited different relative mobilities during non-denaturing polyacrylamide gel electrophoresis (PAGE). The most abundant amylase form (amylase I) was purified to apparent homogeneity using hydrophobic interaction chromatography, gel filtration and chromatofocusing. The apparent molecular mass of the purified amylase was estimated to be 51 kDa by sodium dodecyl sulfate-PAGE and 45 kDa by gel filtration chromatography. The purified amylase was determined to be an endoamylase (EC 3.2.1.1) based on substrate specificity and end-product analysis. The enzyme had a pH optimum of 6.0 and a temperature optimum of 55°C. The apparent Km value with soluble starch (potato) was 1.28 mg ml−1. The presence of Ca2+ increased the activity and thermal stability of the enzyme. The presence of dithiothreitol enhanced the activity, while β -mercaptoethanol and reduced glutathione had no significant effect. When pre-incubated in the absence of the substrate, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid) partially inhibited the enzyme. α -cyclodextrins or β -cyclodextrins had no effect on enzyme activity up to 10 m M . In addition to CaCl2, CoCl2 slightly enhanced activity, while MgCl2 and MnCl2 had no significant effect at a concentration of 2 m M . ZnCl2, CuSO4, AgNO3 and EDTA partially inhibited enzyme activity, while AgNO3 and HgCl2 completely inhibited it at 2.0 m M .  相似文献   

8.
A moderately halophilic Acinetobacter sp., capable of producing dextrinogenic amylase, was isolated from sea-sands. Maximum enzyme production was obtained when the bacterium was cultivated aerobically in media containing 1 to 2M NaCl or 1M KCl. Two kinds of amylase, amylases I and II were purified from the culture filtrate to an electrophoretically homogenous state by glycogen-complex formation, DEAE-Sephadex A-50 chromatography, and Sephadex G-200 gel filtration. Both enzymes had maximal activity at pH 7.0 in 0.2 to 0.6 M NaCl or KCl at 50 to 55 degrees C. The activities were lost by dialysis against distilled water. Molecular weights for amylases I and II were estimated to be 55 000 and 65 000 respectively by SDS-gel electrophoresis. The action pattern on amylose, soluble starch, and glycogen showed that the products were maltose and maltotriose.  相似文献   

9.
Amylases from adults of Sitophilus oryzae (L.) and S. granarius (L.) were purified by using a sequential procedure of ammonium sulfate precipitation, glycogen-complex formation, and ion exchange chromatography. Amylase of S. oryaze was purified 47.4-fold to a specific activity of 478 units/mg protein. One amylase unit equals 1 mg maltose hydrate produced/min at 30°C. Amylase of S. granarius was purified 85.4-fold to a specific activity of 453 units/mg protein. Amylase of S. oryzae had a Km of 0.173% for soluble starch and consisted of two anionic isozyrnes with isoelectric points of pH 3.70 and pH 3.76. Amylase of S. granarius had a Km of 0.078% for starch and was a single protein with an isoelectric point of pH 3.76. Purified amylases of both species had molecular weights of 56,000 estimated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis, were activated by chloride, and had double energies of activation calculated from Arrhenius plots. Based on fresh weights of adults feeding on whole wheat through 10 weeks of age, S. oryzae contained three-fold and eight-fold more amylase than S. granarius and S. zeamais Motschulsky, respectively. High amylase levels in S. oryzae may provide this species with an adaptive advantage when feeding on cereals containing naturally occurring amylase inhibitors.  相似文献   

10.
Three amylolytic Lactobacillus strains designated LEM 220, LEM 207 and LEM 202 were isolated from the chicken crop. They belonged to the subgenus Thermobacterium. Strain LEM 220 resembled Lact. acidophilus. Amylase production was more abundant in cells grown in media containing amylopectin or starch than in media containing glucose or maltose. Optimum pH and temperature of the amylase were 5.5 and 55°C respectively. Hydrolysis of amylopectin gave maltose, maltotriose and small amounts of glucose. Strain LEM 207 also resembled Lact. acidophilus , but differed from strain 220. It had a lower amylase activity. Optimum pH and temperature of the amylase were 6.4 and 40°C, respectively, and hydrolysis of amylopectin gave maltose, maltotriose and carbohydrates higher than maltopentaose. Strain LEM 202 was similar to Lact. vitelinus. It had the lowest amylase activity which was increased only in presence of maltose. Amylase properties were similar to those of LEM 220.  相似文献   

11.
In the usual batch cultivation, Bacillus circulans F-2 produced amylase only when granular carbon sources such as raw starch or crosslinked starches (CLP) were added. In the dialysis cultivation, where CLP and partially purified amylase were incubated inside the dialysis tubing, the bacterium inoculated outside of the tubing grew and produced the amylase. Amylase production of this bacterium was further investigated in feeding cultivation, in which maltose was fed to the cultivation medium at various rates. The bacterial growth increased with the increase of the feeding rate of maltose, but maximum amylase production was observed at a feeding rate of 45 mg/hr/1. No amylase was produced on the media containing monosaccharides, sucrose, lactose, or isomaltose in the feeding cultivation although bacterial growth was observed. The amylase of this bacterium was found to be inducible. Replacement of 20% of the maltose with glucose resulted in a great decrease (70%) in the amylase production. This shows that the amylase synthesis of B. circulans F-2 is severely repressed by glucose.  相似文献   

12.
A moderate halophile, Micrococcus halobius ATCC 21727, produced an extracellular dextrinogenic amylase when cultivated in media containing 1 to 3 M NaCl. The amylase was purified from the culture filtrate to an electrophoretically homogenous state by glycogen-complex formation, diethylaminoethyl-cellulose chromatography, and Bio-Gel P-200 gel filtration. The enzyme had maximal activity at pH 6 to 7 in 0.25 M NaCl or 0.75 M KCl at 50 to 55°C. The activity was lost by dialysis against distilled water. Molecular weight was estimated to be 89,000 by sodium dodecyl sulfate-gel electrophoresis. The action pattern on amylose, soluble starch, and glycogen showed that the products were maltose, maltotriose, and maltotetraose, with lesser amount of glucose.  相似文献   

13.
1. Properties of amylase from two D. subobscura strains homozygous for two different amylase variants (AmyS and AmyF) were determined. 2. Amylase of both strain adults showed a pH optimum of 7.8. 3. The AmyF enzyme showed a higher thermostability. 4. They differed in both maximum activity and Michaelis constant (Vmax of 6.25 and 3.45, Km of 0.7% and 0.42% starch for AmyS and AmyF, respectively). 5. The effect of different feeding conditions in amylase activity in the above Drosophila strains was also studied. Amylase activity was always detected but to a different level depending on diet composition.  相似文献   

14.
The effect of tannins was investigated on growth and α-amylase (α-1,4-glucan 4-glucanohydrolase, EC 3.2.1.1) production by the edible fungal species Calvatia gigantea, grown in a laboratory-scale fermenter on acorn starch media containing up to 2 g tannins l−1. No inhibition of both growth and amylase excretion was observed when the fungus was cultivated on media containing 40 to 100 times higher tannin concentration than that reported to inhibit microbial growth. Amylase excretion was enhanced when starch was dry sterilized but specific growth rate was higher when starch was wet sterilized. Biomass and amylase production increased with increasing substrate concentration and specific growth rate reached its maximum value at 20 g l−1 starch concentration. The optimum pH of biomass and amylase productionwas 5.0–5.5 and 6.0−6.5 respectively and that of temperature was 29–32 and 29–30°C respectively. Maximum yields of 68 250 U amylase and 0.58–0.60 g biomass g−1 acorn were obtained at optimum growth conditions. A plot of reciprocal growth rate vs. reciprocal starch concentration made it possible to calculate Ks = 0.84 g acorn starch l−1 and μmax = 0.249 h−1.  相似文献   

15.
Summary The regulation of extracellular amylase production by the basidiomycetous yeast Filobasidium capsuligenum CCY 64-5-1 was characterized using growing and resting cells. A basal level of amylolytic activity was produced with various carbon sources including glucose. Amylase secretion was repressed by glucose and, more severely, by 2-deoxy-d-glucose, whereas compounds with -1,4-linked glucose, such as methyl glucoside, maltose, -cyclodextrin and soluble starch, served as inducers. Repression was not relieved by exogenously added cAMP. The effects of several metabolic inhibitors on amylase secretion were studied. Following UV-mutagenesis a mutant strain (FC-5) capable of growing in a 2-deoxy-d-glucose supplemented corn starch medium was selected for further characterization. This strain produced more amylase, had acquired an increased resistance against repression by glucose, and retained a growth rate comparable to the wild type. FC-5 was also characterized by a reduced glucokinase activity and an increased hexokinase activity.  相似文献   

16.
The maximal enzymatic activity of crude amylase produced in the batch culture of Clostridium beijerinckii strain AM21B grown in PY medium with starch was obtained at 55°C and in an acidic pH range of 4.6 to 5.4. Amylase was produced in the culture medium after 4 h (46.6 units) and reached a peak (405.5 units) after 12 h cultivation at 36°C, pH 6.0. Although the most efficient production of amylase, hydrogen and cells was achieved at 36°C and pH 6.0, the maximal hydrogen evolution rate was found at 41°C and pH 7.0.  相似文献   

17.
Three amylolytic Lactobacillus strains designated LEM 220, LEM 207 and LEM 202 were isolated from the chicken crop. They belonged to the subgenus Thermobacterium. Strain LEM 220 resembled Lact. acidophilus. Amylase production was more abundant in cells grown in media containing amylopectin or starch than in media containing glucose or maltose. Optimum pH and temperature of the amylase were 5.5 and 55 degrees C respectively. Hydrolysis of amylopectin gave maltose, maltotriose and small amounts of glucose. Stain LEM 207 also resembled Lact. acidophilus, but differed from strain 220. It had a lower amylase activity. Optimum pH and temperature of the amylase were 6.4 and 40 degrees C, respectively, and hydrolysis of amylopectin gave maltose, maltotriose and carbohydrates higher than maltopentaose. Strain LEM 202 was similar to Lact. vitelinus. It had the lowest amylase activity which was increased only in presence of maltose. Amylase properties were similar to those of LEM 220.  相似文献   

18.
An extracellular halophilic α-amylase was purified from Nesterenkonia sp. strain F using 80 % ethanol precipitation and Q-Sepharose anion exchange chromatography. The enzyme showed a single band with an apparent molecular weight of 110 kDa by SDS-PAGE. The amylase exhibited maximal activity at pH 7-7.5, being relatively stable at pH 6.5-7.5. Optimal temperature for the amylase activity and stability was 45 °C. The purified enzyme was highly active in the broad range of NaCl concentrations (0-4 M) with optimal activity at 0.25 M NaCl. The amylase was highly stable in the presence of 3-4 M NaCl. Amylase activity was not influenced by Ca2?, Rb?, Li?, Cs?, Mg2? and Hg2?, whereas Fe3?, Cu2?, Zn2? and Al3?) strongly inhibited the enzyme activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. K(m) value of the amylase for soluble starch was 6.6 mg/ml. Amylolytic activity of the enzyme was enhanced not only by 20 % of water-immiscible organic solvents but also by acetone, ethanol and chloroform. Higher concentration (50 %) of the water-miscible organic solvents had no significant effect on the amylase activity. To the best of our knowledge, this is the first report on increased activity of a microbial α-amylase in the presence of organic solvents.  相似文献   

19.
A potent fungus for amylase production, Chrysosporium asperatum, was isolated from among 30 different cultures obtained from wood samples collected in the Junagadh forest, India. All of the isolated cultures were screened for their ability to produce amylase by submerged fermentation. Among the selected cultures, C. asperatum (Class Euascomycetes; Onygenales; Onygenaceae) gave maximum amylase production. In all of the different media tested, potato starch was found to be a good substrate for production of amylase enzyme at 30 degrees C and pH 5.0. Production of enzyme reached the maximum when a combination of starch and 2% xylose, and organic nitrogen (1% yeast extract) and ammonium sulfate were used as carbon and nitrogen sources, respectively. There was no significant effect of metal ions on enzyme activity. The enzyme was relatively stable at 50 degrees C for 20 min, and no inhibitory effect of Ca+2 ions on amylase production was observed.  相似文献   

20.
Arthrobacter psychrolactophilus ATCC 700733 grew with a doubling time of 1.5–2.3 h (22°C) and produced up to 0.2 units/mL (soluble starch assay) of extracellular amylase in tryptic soy broth without dextrose (TSBWD) containing 0.5% or 1.0% (w/v) soluble starch or maltose as the fermentable substrate. Time-course experiments in media containing soluble starch as substrate showed that amylolytic activity appeared in cultures at 24 h (after exponential growth had ceased), reached peak levels in 72–96 h, and declined rapidly after reaching peak levels. Peak levels were highest in TSBWD containing 1.0% soluble starch. Proteolytic activity appeared at about the same time as amylolytic activity and increased during the period of amylase production. Significant amylase production was not observed in cultures in TSBWD with 0.5% glucose or in cultures grown at 28°C, but low levels of amylase were observed in TSBWD cultures grown at 19–23°C which contained no added carbohydrate. A single band of activity was observed after electrophoresis of supernatant fractions in non-denaturing gels, followed by in situ staining for amylolytic activity. The amylase possessed a raw starch-binding domain and bound to uncooked corn, wheat or potato starch granules. It was active in the Phadebas assay for -amylase. Activity was maximum on soluble starch at a temperature between 40°C and 50°C. The amylase after purification by affinity chromatography on raw starch granules exhibited two starch-binding protein bands on SDS gels of 105 kDa and 26 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号