首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Suppressor-mutator (Spm) transposable element family of maize consists of the fully functional standard Spm (Spm-s) and many mutant elements. Insertion of an Spm element in or near a gene can markedly alter its expression, in some cases bringing the gene under the control of the mechanisms that regulate expression of the element. To gain insight into such mechanisms, as well as to enlarge our understanding of the Spm element's genetic organization, we have analyzed derivatives of a unique Spm insertion at the maize a locus in which the gene is co-expressed and co-regulated with the element. We describe the genetic properties and the structure of the a locus and Spm element in 9 strains (collectively designated the a-m2 alleles) selected by McClintock from the original a-m2 allele for heritable changes affecting either the Spm element or expression of the a gene. Most of the mutations are intra-element deletions within the 8.3-kb Spm element; many alter both Spm function and expression of the gene. Spm controls a gene expression in alleles with internally deleted, transposition-defective Spm elements and element ends contain the target sequences that mediate Spm's ability to activate expression of the gene. We argue that the properties of the a-m2 alleles reflect the operation of an element-encoded positive regulatory mechanism, as well as a negative regulatory mechanism that affects expression of the element, but appears not to be mediated by an element-encoded gene product.  相似文献   

3.
Summary Phenotypic revertants from several kinds of mutations, including deletions, have been detected by pollen analysis at the wx and Adh loci in maize. Mutations in these genes give phenotypic revertants with median frequencies of 0.7 and 0.5×10–5, respectively. However, the nature of such revertants can only be analyzed following their recovery from conventional matings. In the current study large seed populations derived from crosses involving several bz (bronze) locus mutations in maize were examined for reversion to a Bz (purple) expression. Deletion, insertion and point mutations were included in the study. Principally, over 2 million gametes of the bz-R mutation, which is shown here to be associated with a 340 base pair deletion within the transcribed region of the gene, have been screened for reversion. No revertants from it or any of the other bz mutations have been recovered, even though a total of almost 5 million gametes from homoallelic crosses have been examined to date. Results from seed analysis are discussed in reference to those from pollen analysis in maize.  相似文献   

4.
5.
6.
Molecular identification and isolation of the Waxy locus in maize   总被引:43,自引:0,他引:43  
M Shure  S Wessler  N Fedoroff 《Cell》1983,35(1):225-233
  相似文献   

7.
Two-component histidine kinases of bacteria, plants, and fungi are involved in the regulation of intracellular events in response to changes in external environmental conditions. Fungal histidine kinases play important roles in osmoregulation, in vivo and in planta virulence, and sensitivity to certain classes of antifungals. The osmotic-1 (OS-1) locus of Neurospora crassa encodes a predicted protein with homology to histidine kinases and appears to be an osmosensor. Mutants of the OS-1 locus are hypersensitive to salt and are strongly resistant to dicarboximide antifungals. Molecular analysis of each of eight OS-1 mutants revealed that seven resulted from amino acid changes in a domain of the protein known as the linker region. These results indicate that the linker region of fungal two-component histidine kinases is essential for proper functioning of the kinase.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Molecular analysis of the yellow locus of Drosophila   总被引:14,自引:4,他引:14       下载免费PDF全文
  相似文献   

15.
16.
17.
In many inbred lines of maize, two 27-kDa storage protein (zein) genes are found within tandem duplications of 12 kb. Both genes of the duplicated allele from the maize inbred line A188 were sequenced and compared to a similar duplicated allele in another inbred line, W22, and to a single-copy allele in the inbred line W64A. The comparisons reveal interesting patterns in the distribution of sequence changes between these alleles. Differences between the two duplicated alleles that are conserved between the two genes of each allele are found exclusively in the 5' region. In contrast, differences between the individual genes of each allele in the 3' region are conserved between the two alleles. The first case is indicative of an intraallelic copy correction mechanism, whereas the second may result from interallelic copy correction. These may be mediated by gene conversion processes, as previously described for other multigene families.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号