首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to investigate the hypothesis that reductions in Na+-K+- ATPase activity are associated with neuromuscular fatigue following isometric exercise. In control (Con) and exercised (Ex) legs, force and electromyogram were measured in 14 volunteers [age, 23.4 +/- 0.7 (SE) yr] before and immediately after (PST0), 1 h after (PST1), and 4 h after (PST4) isometric, single-leg extension exercise at ~60% of maximal voluntary contraction for 30 min using a 0.5 duty cycle (5-s contraction, 5-s rest). Tissue was obtained from vastus lateralis muscle before exercise in Con and after exercise in both the Con (PST0) and Ex legs (PST0, PST1, PST4), for the measurements of Na+-K+-ATPase activity, as determined by the 3-O-methylfluorescein phosphatase (3-O-MFPase) assay. Voluntary (maximal voluntary contraction) and elicited (10, 20, 50, 100 Hz) force was reduced 30-55% (P < 0.05) at PST0 and did not recover by PST4. Muscle action potential (M-wave) amplitude and area (measured in the vastus medialis) and 3-O-MFPase activity at PST0-Ex were less than that at PST0-Con (P < 0.05) by 37, 25, and 38%, respectively. M-wave area at PST1-Ex was also less than that at PST1-Con (P < 0.05). Changes in 3-O-MFPase activity correlated to changes in M-wave area across all time points (r = 0.38, P < 0.05, n = 45). These results demonstrate that Na+-K+- ATPase activity is reduced by sustained isometric exercise in humans from that in a matched Con leg and that this reduction in Na+-K+-ATPase activity is associated with loss of excitability as indicated by M-wave alterations.  相似文献   

2.
Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage.  相似文献   

3.
This study evaluated the arm, trunk, and leg for fat mass, lean soft tissue mass, and bone mineral content (BMC) assessed via dual-energy X-ray absorptiometry in a group of age-matched (approximately 29 yr) men (n = 57) and women (n = 63) and determined their relationship to insulin-like growth factor I (IGF-I) and leptin. After analysis of covariance adjustment to control for differences in body mass between genders, the differences that persisted (P < or = 0.05) were for lean soft tissue mass of the arm (men: 7.1 kg vs. women: 6.4 kg) and fat mass of the leg (men: 5.3 kg vs. women: 6.8 kg). Men and women had similar (P > or = 0.05) values for fat mass of the arms and trunk and lean soft tissue mass of the legs and trunk. Serum IGF-I and insulin-like growth factor binding protein-3 correlated (P < or = 0.05) with all measures of BMC (r values ranged from 0.31 to 0.39) and some measures of lean soft tissue mass for women (r = 0.30) but not men. Leptin correlated (P < or = 0.05) similarly for measures of fat mass for both genders (r values ranging from 0.74 to 0.85) and for lean soft tissue mass of the trunk (r = 0.40) and total body (r = 0.32) for men and for the arms in women (r = 0.56). These data demonstrate that 1) the main phenotypic gender differences in body composition are that men have more of their muscle mass in their arms and women have more of their fat mass in their legs and 2) gender differences exist in the relationship between somatotrophic hormones and lean soft tissue mass.  相似文献   

4.
Resistance training changes the balance of muscle protein turnover, leading to gains in muscle mass. A longitudinal design was employed to assess the effect that resistance training had on muscle protein turnover in the fed state. A secondary goal was investigation of the potential interactive effects of creatine (Cr) monohydrate supplementation on resistance-training-induced adaptations. Young (N = 19, 23.7 +/- 3.2 year), untrained (UT), healthy male subjects completed an 8-week resistance-training program (6 d/week). Supplementation with Cr had no impact on any of the variables studied; hence, all subsequent data were pooled. In the UT and trained (T) state, subjects performed an acute bout of resistance exercise with a single leg (exercised, EX), while their contralateral leg acted as a nonexercised (NE) control. Following exercise, subjects were fed while receiving a primed constant infusion of [d5]- and [15N]-phenylalanine to determine the fractional synthetic and breakdown rates (FSR and FBR), respectively, of skeletal muscle proteins. Acute exercise increased FSR (UT-NE, 0.065 +/- 0.025 %/h; UT-EX, 0.088 +/- 0.032 %/h; P < 0.01) and FBR (UT-NE, 0.047 +/- 0.023 %/h; UT-EX, 0.058 +/- 0.026 %/h; P < 0.05). Net balance (BAL = FSR - FBR) was positive in both legs (P < 0.05) but was significantly greater (+65%) in the EX versus the NE leg (P < 0.05). Muscle protein FSR and FBR were greater at rest following T (FSR for T-NE vs. UT-NE, +46%, P < 0.01; FBR for T-NE vs. UT-NE, +81%, P < 0.05). Resistance training attenuated the acute exercise-induced rise in FSR (T-NE vs. T-EX, +20%, P = 0.65). The present results demonstrate that resistance training resulted in an elevated resting muscle protein turnover but an attenuation of the acute response of muscle protein turnover to a single bout of resistance exercise.  相似文献   

5.
Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (n = 8) and female (n = 8) subjects performed two bouts (bout 1 and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 (P < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 (P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 and bout 2 (P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.  相似文献   

6.
We examined gender differences in growth hormone (GH) secretion during rest and exercise. Eighteen subjects (9 women and 9 men) were tested on two occasions each [resting condition (R) and exercise condition (Ex)]. Blood was sampled at 10-min intervals from 0600 to 1200 and was assayed for GH by chemiluminescence. At R, women had a 3.69-fold greater mean calculated mass of GH secreted per burst compared with men (5.4 +/- 1.0 vs. 1.7 +/- 0.4 microg/l, respectively) and higher basal (interpulse) GH secretion rates, which resulted in greater GH production rates and serum GH area under the curve (AUC; 1,107 +/- 194 vs. 595 +/- 146 microg x l(-1) x min, women vs. men; P = 0.04). Compared with R, Ex resulted in greater mean mass of GH secreted per burst, greater mean GH secretory burst amplitude, and greater GH AUC (1,196 +/- 211 vs. 506 +/- 90 microg x l(-1) x min, Ex vs. R, respectively; P < 0.001). During Ex, women attained maximal serum GH concentrations significantly earlier than men (24 vs. 32 min after initiation of Ex, respectively; P = 0.004). Despite this temporal disparity, both genders had similar maximal serum GH concentrations. The change in AUC (adjusted for unequal baselines) was similar for men and women (593 +/- 201 vs. 811 +/- 268 microg x l(-1) x min), but there were significant gender-by-condition interactive effects on GH secretory burst mass, pulsatile GH production rate, and maximal serum GH concentration. We conclude that, although women exhibit greater absolute GH secretion rates than men both at rest and during exercise, exercise evokes a similar incremental GH response in men and women. Thus the magnitude of the incremental secretory GH response is not gender dependent.  相似文献   

7.
The purpose of this study was to determine whether lower body negative pressure (LBNP) treadmill exercise maintains lumbar spinal compressive properties, curvature, and back muscle strength after 28 days of 6 degrees head-down tilt (HDT) bed rest (BR). We hypothesize that LBNP treadmill exercise will maintain lumbar spine compressibility, lumbar lordosis and back muscle strength after 28 days of 6 degrees HDT bed rest. Fifteen healthy identical twin pairs (14 women and 16 men) participated in this study. One identical twin was randomly assigned to the nonexercise control (Con) group, and their sibling was assigned to the exercise (Ex) group. The lumbar spine was significantly more compressible Post-BR compared with Pre-BR in the Con (P=0.01). Lumbar spine compressibility Post-BR was not significantly different compared with Pre-BR in the Ex group (P=0.89). In both the Con and Ex groups, there were no significant changes Post-BR in lumbar lordosis compared with Pre-BR. Back muscle strength significantly decreased in the Con group Post-BR (P=0.002), whereas in the Ex group back muscle strength was not significantly different from Pre-BR values. A significant increase in lumbar spine compressibility in the Con group suggests that spinal deconditioning to gravity occurs during 28-day bed rest. Changes in the mechanical properties of the lumbar spine may be an early indicator of lumbar intervertebral disk degeneration. Supine LBNP treadmill exercise provides axial loads to the lumbar spine and may prevent lumbar spine deconditioning associated with HDT bed rest.  相似文献   

8.
We determined the effect of muscle glycogen concentration and postexercise nutrition on anabolic signaling and rates of myofibrillar protein synthesis after resistance exercise (REX). Sixteen young, healthy men matched for age, body mass, peak oxygen uptake (Vo(2peak)) and strength (one repetition maximum; 1RM) were randomly assigned to either a nutrient or placebo group. After 48 h diet and exercise control, subjects undertook a glycogen-depletion protocol consisting of one-leg cycling to fatigue (LOW), whereas the other leg rested (NORM). The next morning following an overnight fast, a primed, constant infusion of l-[ring-(13)C(6)] phenylalanine was commenced and subjects completed 8 sets of 5 unilateral leg press repetitions at 80% 1RM. Immediately after REX and 2 h later, subjects consumed a 500 ml bolus of a protein/CHO (20 g whey + 40 g maltodextrin) or placebo beverage. Muscle biopsies from the vastus lateralis of both legs were taken at rest and 1 and 4 h after REX. Muscle glycogen concentration was higher in the NORM than LOW at all time points in both nutrient and placebo groups (P < 0.05). Postexercise Akt-p70S6K-rpS6 phosphorylation increased in both groups with no differences between legs (P < 0.05). mTOR(Ser2448) phosphorylation in placebo increased 1 h after exercise in NORM (P < 0.05), whereas mTOR increased ~4-fold in LOW (P < 0.01) and ~11 fold in NORM with nutrient (P < 0.01; different between legs P < 0.05). Post-exercise rates of MPS were not different between NORM and LOW in nutrient (0.070 ± 0.022 vs. 0.068 ± 0.018 %/h) or placebo (0.045 ± 0.021 vs. 0.049 ± 0.017 %/h). We conclude that commencing high-intensity REX with low muscle glycogen availability does not compromise the anabolic signal and subsequent rates of MPS, at least during the early (4 h) postexercise recovery period.  相似文献   

9.
This study assessed ultrastructural muscle damage in young (20-30 yr old) vs. older (65-75 yr old) men after heavy-resistance strength training (HRST). Seven young and eight older subjects completed 9 wk of unilateral leg extension HRST. Five sets of 5-20 repetitions were performed 3 days/wk with variable resistance designed to subject the muscle to near-maximal loads during every repetition. Biopsies were taken from the vastus lateralis of both legs, and muscle damage was quantified via electron microscopy. Training resulted in a 27% strength increase in both groups (P < 0.05). In biopsies before training in the trained leg and in all biopsies from untrained leg, 0-3% of muscle fibers exhibited muscle damage in both groups (P = not significant). After HRST, 7 and 6% of fibers in the trained leg exhibited damage in the young and older men, respectively (P < 0.05, no significant group differences). Myofibrillar damage was primarily focal, confined to one to two sarcomeres. Young and older men appear to exhibit similar levels of muscle damage at baseline and after chronic HRST.  相似文献   

10.
白藜芦醇是天然存在的沉默信息调节因子2相关酶1(sirtuin1,SIRT1)小分子激动剂,其肾的保护作用已在多种肾疾病动物模型中得到了验证。然而,白藜芦醇是否能够改善力竭训练导致的大鼠肾损伤,以及是否通过SIRT1/NF κB信号通路调节运动性肾损伤大鼠肾炎症反应,尚缺乏系统研究。本研究将32只SD大鼠随机分为安静对照组(Con组),白藜芦醇组(Rsv组),力竭运动组(Ex组),力竭运动+白藜芦醇组(Ex+Rsv组)。Rsv和Ex+Rsv组每天灌胃50 mg/kg体重剂量的白藜芦醇, Ex和Ex+Rsv组进行4周力竭训练,最后1次训练后24 h取材。本研究结果显示,与Con组相比,Ex组大鼠Scr(175.66 ± 16.08 vs.153.34 ± 8.67,P < 0.01)、BUN(6.67 ± 0.53 vs.5.37 ± 019,P < 0.01)和尿NGAL(9.01 ± 0.18 vs.7.48 ± 0.31,P < 0.01)水平均显著升高,Ex组大鼠肾组织NF κB P65在蛋白质水平表达显著升高(0.77 ± 010 vs. 0.27 ± 0.03,P < 0.01);各组大鼠肾组织SIRT1在蛋白质水平表达上,Rsv组显著高于Con组(0.90 ± 0.14 vs. 0.43 ± 0.15,P < 0.05),Ex+Rsv组显著高于Ex组(1.0 ± 0.28 vs. 0.38 ± 0.12,P< 001);与Ex组相比,Ex+Rsv组大鼠肾组织NF-κB P65(0.57 ± 0.13 vs. 0.77 ± 0.10,P < 0.05)和Ac-NF-κB P65(0.52 ± 0.13 vs. 0.78 ± 0.11,P < 0.05)在蛋白质水平表达显著降低。以上结果表明,4周大强度力竭运动导致大鼠出现运动性肾损伤,并激活大鼠肾NF-κB的表达。白藜芦醇可显著提高大鼠肾组织SIRT1在蛋白质水平的表达,并增加脱乙酰化作用,降低NF-κB P65蛋白质乙酰化修饰水平,进一步降低NF-κB的表达。白藜芦醇减轻力竭训练致大鼠肾的炎症反应的机制可能与SIRT1/NF-κB通路有关。  相似文献   

11.
Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle training, 30 min/day, 6 days/wk for 10 wk at approximately 70% of maximal O(2) uptake) and untrained (UT) legs of healthy men (H) [n = 6, age 60 +/- 2 (SE) yr] and patients with Type 2 diabetes mellitus (DM) (n = 4, age 56 +/- 3 yr) during a hyperinsulinemic ( approximately 16,000 pmol/l), isoglycemic clamp with a final 30 min of superimposed two-legged exercise at 70% of individual maximal heart rate. With superimposed exercise, leg glucose extraction decreased (P < 0.05), and leg blood flow and leg glucose clearance increased (P < 0.05), compared with hyperinsulinemia alone. During exercise, leg blood flow was similar in both groups of subjects and between T and UT legs, whereas glucose extraction was always higher (P < 0.05) in T compared with UT legs (15.8 +/- 1.2 vs. 14.6 +/- 1.8 and 11.9 +/- 0.8 vs. 8.8 +/- 1.8% for H and DM, respectively) and leg glucose clearance was higher in T (H: 73 +/- 8, DM: 70 +/- 10 ml. min(-1). kg leg(-1)) compared with UT (H: 63 +/- 8, DM: 45 +/- 7 ml. min(-1). kg leg(-1)) but not different between groups (P > 0.05). From these results it can be concluded that, in both diabetic and healthy aged muscle, exercise adds to a maximally insulin-stimulated glucose clearance and that glucose extraction and clearance are both enhanced by training.  相似文献   

12.
We combined tracer and arteriovenous (a-v) balance techniques to evaluate the effects of exercise and endurance training on leg triacylglyceride turnover as assessed by glycerol exchange. Measurements on an exercising leg were taken to be a surrogate for working skeletal muscle. Eight men completed 9 wk of endurance training [5 days/wk, 1 h/day, 75% peak oxygen consumption (Vo(2peak))], with leg glycerol turnover determined during two pretraining trials [45 and 65% Vo(2peak) (45% Pre and 65% Pre, respectively)] and two posttraining trials [65% of pretraining Vo(2peak) (ABT) and 65% of posttraining Vo(2peak) (RLT)] using [(2)H(5)]glycerol infusion, femoral a-v sampling, and measurement of leg blood flow. Endurance training increased Vo(2peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 mlxkg(-1)xmin(-1), P < 0.05). At rest, there was tracer-measured leg glycerol uptake (41 +/- 8 and 52 +/- 15 micromol/min for pre- and posttraining, respectively) even in the presence of small, but significant, net leg glycerol release (-68 +/- 19 and -50 +/- 13 micromol/min, respectively; P < 0.05 vs. zero). Furthermore, while there was no significant net leg glycerol exchange during any of the exercise bouts, there was substantial tracer-measured leg glycerol turnover during exercise (i.e., simultaneous leg muscle uptake and leg release) (uptake, release: 45% Pre, 194 +/- 41, 214 +/- 33; 65% Pre, 217 +/- 79, 201 +/- 84; ABT, 275 +/- 76, 312 +/- 87; RLT, 282 +/- 83, 424 +/- 75 micromol/min; all P < 0.05 vs. corresponding rest). Leg glycerol turnover was unaffected by exercise intensity or endurance training. In summary, simultaneous leg glycerol uptake and release (indicative of leg triacylglyceride turnover) occurs despite small or negligible net leg glycerol exchange, and furthermore, leg glycerol turnover can be substantially augmented during exercise.  相似文献   

13.
We previously reported that epinephrine stimulates leg free fatty acid (FFA) release in men but not in women. The present studies were conducted to determine whether the same is true during exercise. Six men and six women bicycled for 90 min at 45% of peak O(2) consumption, during which time systemic and leg FFA kinetics ([9, 10-(3)H]palmitate) were measured. The catecholamine and hormonal responses to exercise were not different in men and women. The baseline systemic and leg palmitate release was 94 +/- 15 vs. 114 +/- 5 micromol/min and 16 +/- 2 and 20 +/- 3 micromol/min, respectively, in men and women [P = nonsignificant (NS)]. Systemic and leg palmitate release increased (both P < 0.001) to 251 +/- 18 vs. 212 +/- 16 micromol/min and 73 +/- 19 vs. 80 +/- 12 micromol/min in men and women, respectively, during the last 30 min of exercise (P = NS, men vs. women). We conclude that the systemic and leg adipose tissue lipolytic response to exercise is not different in nonobese men and women.  相似文献   

14.
Ten healthy young men (21.0 +/- 1.5 yr, 1.79 +/- 0.1 m, 82.7 +/- 14.7 kg, means +/- SD) participated in 8 wk of intense unilateral resistance training (knee extension exercise) such that one leg was trained (T) and the other acted as an untrained (UT) control. After the 8 wk of unilateral training, infusions of L-[ring-d(5)]phenylalanine, L-[ring-(13)C(6)]phenylalanine, and d(3)-alpha-ketoisocaproic acid were used to measure mixed muscle protein synthesis in the T and UT legs by the direct incorporation method [fractional synthetic rate (FSR)]. Protein synthesis was determined at rest as well as 4 h and 28 h after an acute bout of resistance exercise performed at the same intensity relative to the gain in single repetition maximum before and after training. Training increased mean muscle fiber cross-sectional area only in the T leg (type I: 16 +/- 10%; type II: 20 +/- 19%, P < 0.05). Acute resistance exercise increased muscle protein FSR in both legs at 4 h (T: 162 +/- 76%; UT: 108 +/- 62%, P < 0.01 vs. rest) with the increase in the T leg being significantly higher than in the UT leg at this time (P < 0.01). At 28 h postexercise, FSR in the T leg had returned to resting levels; however, the rate of protein synthesis in the UT leg remained elevated above resting (70 +/- 49%, P < 0.01). We conclude that resistance training attenuates the protein synthetic response to acute resistance exercise, despite higher initial increases in FSR, by shortening the duration for which protein synthesis is elevated.  相似文献   

15.
To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.  相似文献   

16.
To determine possible age differences in muscle damage response to strength training, ultrastructural muscle damage was assessed in seven 20- to 30-yr-old and six 65- to 75-yr-old previously sedentary women after heavy-resistance strength training (HRST). Subjects performed unilateral knee-extension exercise 3 days/wk for 9 wk. Bilateral muscle biopsies from the vastus lateralis were assessed for muscle damage via electron microscopy. HRST resulted in a 38 and 25% increase in strength in the young and older women, respectively (P < 0.05), but there were no between-group differences. In the young women, 2-4% of muscle fibers exhibited damage before and after training in both the trained and untrained legs (P = not significant). In contrast, muscle damage increased significantly after HRST, from 5 to 17% of fibers damaged (P < 0.01), in the older women in the trained leg compared with only 2 and 5% of fibers damaged in the untrained leg before and after training, respectively. The present results indicate that older women exhibit higher levels of muscle damage after chronic HRST than do young women.  相似文献   

17.
We examined the effect of glycogen-depleting exercise on subsequent muscle total creatine (TCr) accumulation and glycogen resynthesis during postexercise periods when the diet was supplemented with carbohydrate (CHO) or creatine (Cr) + CHO. Fourteen subjects performed one-legged cycling exercise to exhaustion. Muscle biopsies were taken from the exhausted (Ex) and nonexhausted (Nex) limbs after exercise and after 6 h and 5 days of recovery, during which CHO (CHO group, n = 7) or Cr + CHO (Cr+CHO group, n = 7) supplements were ingested. Muscle TCr concentration ([TCr]) was unchanged in both groups 6 h after supplementation commenced but had increased in the Ex (P < 0.001) and Nex limbs (P < 0.05) of the Cr+CHO group after 5 days. Greater TCr accumulation was achieved in the Ex limbs (P < 0.01) of this group. Glycogen was increased above nonexercised concentrations in the Ex limbs of both groups after 5 days, with the concentration being greater in the Cr+CHO group (P = 0.06). Thus a single bout of exercise enhanced muscle Cr accumulation, and this effect was restricted to the exercised muscle. However, exercise also diminished CHO-mediated insulin release, which may have attenuated insulin-mediated muscle Cr accumulation. Ingesting Cr with CHO also augmented glycogen supercompensation in the exercised muscle.  相似文献   

18.
To determine the differences between armand leg muscle quality (MQ) across the adult life span in men andwomen, concentric (Con) and eccentric (Ecc) peak torque (PT) weremeasured in 703 subjects (364 men and 339 women, age range 19-93yr) and appendicular skeletal muscle mass (MM) was determined in thearm and leg in a subgroup of 502 of these subjects (224 men and 278 women). Regression analysis showed that MQ, defined as PT per unit ofMM, was significantly higher in the arm (~30%) than in the legacross age in both genders (P < 0.01). Arm and leg MQ declined at a similar rate with age in men,whereas leg MQ declined ~20% more than arm MQ with increasing age inwomen (P  0.01 andP < 0.05 for Con and Ecc PT,respectively). Moreover, the age-associated decrease in arm MQ wassteeper in men than in women whether Con or Ecc PT was used (bothP < 0.05). Arm MQ as determined byCon PT showed a linear age-related decline in men and women (28 and20%, respectively, P < 0.001),whereas arm MQ as determined by Ecc PT showed a linear age-relateddecline in men (25%, P < 0.001) butnot in women (not significant). In contrast, both genders exhibited anage-related quadratic decline in leg MQ as determined by Con PT(~40%) and Ecc PT (~25%; both P < 0.001), and the rate of decline was similar for men and women. ThusMQ is affected by age and gender, but the magnitude of this effectdepends on the muscle group studied and the type of muscle action (Convs. Ecc) used to assess strength.

  相似文献   

19.
The purpose of this study was to determine the effects of short-term (14-day) unilateral leg immobilization using a simple knee brace (60 degree flexion)- or crutch-mediated model on muscle function and morphology in men (M, n = 13) and women (W, n = 14). Isometric and isokinetic (concentric-slow, 0.52 rad/s and fast, 5.24 rad/s) knee extensor peak torque was determined at three time points (Pre, Day-2, and Day-14). At the same time points, magnetic resonance imaging was used to measure the cross-sectional area of the quadriceps femoris and dual-energy X-ray absorptiometry scanning was used to calculate leg lean mass. Muscle biopsies were taken from vastus lateralis at Pre and Day-14 for myosin ATPase and myosin heavy chain analysis. Women showed greater decreases (Pre vs. Day-14) compared with men in specific strength (N/cm2) for isometric [M = 3.1 +/- 13.3, W = 17.1 +/- 15.9%; P = 0.055 (mean +/- SD)] and concentric-slow (M = 4.7 +/- 11.3, W = 16.6 +/- 18.4%; P < 0.05) contractions. There were no immobilization-induced sex-specific differences in the decrease in quadriceps femoris cross-sectional area (M = 5.7 +/- 5.0, W = 5.9 +/- 5.2%) or leg lean mass (M = 3.7 +/- 4.2, W = 2.7 +/- 2.8%). There were no fiber-type transformations, and the decreases in type I (M = 4.8 +/- 5.0, W = 5.9 +/- 3.4%), IIa (M = 7.9 +/- 9.9, W = 8.8 +/- 8.0%), and IIx (M = 10.7 +/- 10.8, W = 10.8 +/- 12.1%) fiber areas were similar between sexes. These findings indicate that immobilization-induced loss of knee extensor muscle strength is greater in women compared with men despite a similar extent of atrophy at the myofiber and whole muscle levels after 14 days of unilateral leg immobilization. Furthermore, we have described an effective and safe knee immobilization method that results in reductions in quadriceps muscle strength and size.  相似文献   

20.
Cellular antioxidant capacity and oxidative stress are postulated to be critical factors in the aging process. The effects of resistance exercise training on the level of skeletal muscle oxidative stress and antioxidant capacity have not previously been examined in older adults. Muscle biopsies from both legs were obtained from the vastus lateralis muscle of 12 men 71 +/- 7 years of age. Subjects then engaged in a progressive resistance exercise-training program with only one leg for 12 weeks. After 12 weeks, the nontraining leg underwent an acute bout of exercise (exercise session identical to that of the trained leg at the same relative intensity) at the same time as the last bout of exercise in the training leg. Muscle biopsies were collected from the vastus lateralis of both legs 48 h after the final exercise bout. Electron transport chain enzyme activity was unaffected by resistance training and acute resistance exercise (p < 0.05). Training resulted in a significant increase in CuZnSOD (pre--7.2 +/- 4.2, post--12.6 +/- 5.6 U.mg protein(-1); p = 0.02) and catalase (pre--8.2 +/- 2.3, post--14.9 +/- 7.6 micromol.min(-1).mg protein(-1); p = 0.02) but not MnSOD activity, whereas acute exercise had no effect on the aforementioned antioxidant enzyme activities. Furthermore, basal muscle total protein carbonyl content did not change as a result of exercise training or acute exercise. In conclusion, unilateral resistance exercise training is effective in enhancing the skeletal muscle cellular antioxidant capacity in older adults. The potential long-term benefits of these adaptations remain to be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号