首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The gap junction protein connexin43 (Cx43) has been reported to exist as several phosphorylated forms migrating at ˜43 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as well as an unphosphorylated 41-kDa form. In brain, Cx43 is expressed predominantly in astrocytes and is also expressed in several other cell types. Whereas the phosphorylated forms of Cx43 predominate in heart, several studies have indicated that high levels of the unphosphorylated form of Cx43 are present in brain. Various experiments in this report indicate that the 41-kDa molecular form in brain is a postmortem dephosphorylation product of phosphorylated Cx43. In rats killed by cranial high-energy microwave irradiation leading to rapid inactivation of brain metabolism, Cx43 in cerebral cortex was present almost exclusively as the 43-kDa phosphorylated form. Rapid dissection of brain followed by heat treatment or inclusion of phosphatase inhibitors during tissue homogenization also largely prevented the conversion of the 43-to the 41-kDa form. The 41-kDa species was generated after alkaline phosphatase digestion of the 43-kDa material obtained by immunoprecipitation from microwave-irradiated brain. Immunolabeling patterns and relative regional levels of Cx43 as seen by immunohistochemical and western blot detection were the same whether or not metabolism to the 41-kDa species was prevented. In developing rat brain, Cx43 levels in frontal cortex and brainstem increased with age, but the degree of dephosphorylation of the 43-to the 41-kDa form was greater at earlier ages in the brainstem. It appears that brain contains a phosphatase that may be involved in modulating the phosphorylation state of Cx43 and thus may regulate intercellular communication via astrocytic gap junctions.  相似文献   

2.
3.
The pore-forming gap junctional protein connexin 43 (Cx43) has a short (1-3 h) half-life in cells in tissue culture and in whole tissues. Although critical for cellular function in all tissues, the process of gap junction turnover is not well understood because treatment of cells with a proteasomal inhibitor results in larger gap junctions but little change in total Cx43 protein whereas lysosomal inhibitors increase total, mostly nonjunctional Cx43. To better understand turnover and identify potential sites of Cx43 ubiquitination, we prepared constructs of Cx43 with different lysines converted to arginines. However, when transfected into cells, a mutant version of Cx43 with all lysines converted to arginines behaved similarly to wild type in the presence of proteasomal and lysosomal inhibitors, indicating that ubiquitination of Cx43 did not appear to be playing a role in gap junction stability. Through the use of inhibitors and dominant negative constructs, we found that Akt (protein kinase B) activity controlled gap junction stability and was necessary to form larger stable gap junctions. Akt activation was increased upon proteasomal inhibition and resulted in phosphorylation of Cx43 at Akt phosphorylation consensus sites. Thus, we conclude that Cx43 ubiquitination is not necessary for the regulation of Cx43 turnover; rather, Akt activity, probably through direct phosphorylation of Cx43, controls gap junction stability. This linkage of a kinase involved in controlling cell survival and growth to gap junction stability may mechanistically explain how gap junctions and Akt play similar regulatory roles.  相似文献   

4.
Previous studies have indicated an intimate linkage between gap junction and adherens junction formation. It was suggested this could reflect the close membrane-membrane apposition required for junction formation. In NIH3T3 cells, we observed the colocalization of connexin43 (Cx43alpha1) gap junction protein with N-cadherin, p120, and other N-cadherin-associated proteins at regions of cell-cell contact. We also found that Cx43alpha1, N-cadherin, and N-cadherin-associated proteins were coimmunoprecipitated by antibodies to either Cx43alpha1, N-cadherin, or various N-cadherin-associated proteins. These findings suggest that Cx43alpha1 and N-cadherin are coassembled in a multiprotein complex containing various N-cadherin-associated proteins. Studies using siRNA knockdown indicated that cell surface expression of Cx43alpha1 required N-cadherin, and conversely, N-cadherin cell surface expression required Cx43alpha1. Pulse-chase labeling and cell surface biotinylation experiments indicated that in the absence of N-cadherin, Cx43alpha1 cell surface trafficking is blocked. Surprisingly, siRNA knockdown of p120, an N-cadherin-associated protein known to modulate cell surface turnover of N-cadherin, reduced N-cadherin cell surface expression without altering Cx43alpha1 expression. These observations suggest that in contrast to the coregulated cell surface trafficking of Cx43alpha1 and N-cadherin, N-cadherin turnover at the cell surface may be regulated independently of Cx43alpha1. Functional studies showed gap junctional communication is reduced and cell motility inhibited with N-cadherin or Cx43alpha1 knockdown, consistent with the observed loss of both gap junction and cadherin contacts with either knockdown. Overall, these studies indicate that the intracellular coassembly of connexin and cadherin is required for gap junction and adherens junction formation, a process that likely underlies the intimate association between gap junction and adherens junction formation.  相似文献   

5.
《FEBS letters》2014,588(8):1423-1429
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially “unzip” and be internalized/endocytosed into the cell that produced each connexin.  相似文献   

6.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

7.
Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates. The presence of the 20-kDa band was not prevented by the use of protease inhibitors (Complete(R) and phenylmethylsulfonyl fluoride (PMSF), 1-5 mM). The band was absent from cells treated with Cx43-specific RNAi, and from those derived from Cx43-deficient mice, indicating that this Cx43-immunoreactive protein is a product of the Cx43 gene. Treatment of CHO cells with cyclosporin A caused a reduction in the amount of full-length Cx43 and a concomitant increase in the amount of the 20-kDa band. Overall, our data show that a fraction of the Cx43-immunoreactive protein pool within a given cell may correspond to a C-terminal fragment of the protein.  相似文献   

8.
Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates. The presence of the 20-kDa band was not prevented by the use of protease inhibitors (Complete® and phenylmethylsulfonyl fluoride (PMSF), 1-5 mM). The band was absent from cells treated with Cx43-specific RNAi, and from those derived from Cx43-deficient mice, indicating that this Cx43-immunoreactive protein is a product of the Cx43 gene. Treatment of CHO cells with cyclosporin A caused a reduction in the amount of full-length Cx43 and a concomitant increase in the amount of the 20-kDa band. Overall, our data show that a fraction of the Cx43-immunoreactive protein pool within a given cell may correspond to a C-terminal fragment of the protein.  相似文献   

9.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.  相似文献   

10.
To study the gap junction protein connexin37 (Cx37), we stably transfected cell lines with constructs of human Cx37 containing the epitope tag FLAG (DYKDDDDK). A Cx37 construct containing the FLAG moiety at the carboxyl terminus (Cx37F) was expressed in BWEM cells, and did not substantially alter the levels of endogenous Cx43 in these cells. Immunostaining showed that Cx37F colocalized with Cx43 at cell–cell contacts. Pulse-chase metabolic labeling and immunoprecipitation with anti-FLAG antibodies indicated that Cx37F was synthesized as a protein that ran at 35.9 ± 0.9 kDa on reducing SDS–PAGE but chased into a slower migrating band at 38.0 ± 1.0 kDa. This shift in mobility was due to phosphorylation on serine residues, based on [32P]-metabolic labeling, immunoprecipitation, and phosphoamino acid analyses. The transition to the phosphoCx37F correlated with a loss of solubility in 1% Triton X-100. Based on the [35S]-methionine pulse-chase experiments, the half-life of the labeled Cx37F was approximately 3 h, which is within the range reported for other connexins. Analysis of dye injection experiments indicated that dye transfer was reduced in Cx37-transfected cells in comparison to parental BWEM cells, suggesting that formation of heteromeric Cx37–Cx43 channels reduced the molecular permeability of communication between these cells. Moreover, the similarities of previously demonstrated kinetic details and modification of Cx43 to our new data regarding Cx37 provide evidence for a commonality in processing and assembly steps of these two connexins.  相似文献   

11.
《The Journal of cell biology》1995,131(5):1193-1203
Intercellular gap junction channels are thought to form when oligomers of connexins from one cell (connexons) register and pair with connexons from a neighboring cell en route to forming tightly packed arrays (plaques). In the current study we used the rat mammary BICR-M1Rk tumor cell line to examine the trafficking, maturation, and kinetics of connexin43 (Cx43). Cx43 was conclusively shown to reside in the Golgi apparatus in addition to sites of cell-cell apposition in these cells and in normal rat kidney cells. Brefeldin A (BFA) blocked Cx43 trafficking to the surface of the mammary cells and also prevented phosphorylation of the 42-kD form of Cx43 to 44- and 46-kD species. However, phosphorylation of Cx43 occurred in the presence of BFA while it was still a resident of the ER or Golgi apparatus yielding a 43-kD form of Cx43. Moreover, the 42- and 43-kD forms of Cx43 trapped in the ER/Golgi compartment were available for gap junction assembly upon the removal of BFA. Mammary cells treated with BFA for 6 h lost preexisting gap junction "plaques," as well as the 44- and 46-kD forms of Cx43 and functional coupling. These events were reversible 1 h after the removal of BFA and not dependent on protein synthesis. In summary, we provide strong evidence that in BICR-M1Rk tumor cells: (a) Cx43 is transiently phosphorylated in the ER/Golgi apparatus, (b) Cx43 trapped in the ER/Golgi compartment is not subject to rapid degradation and is available for the assembly of new gap junction channels upon the removal of BFA, (c) the rapid turnover of gap junction plaques is correlated with the loss of the 44- and 46-kD forms of Cx43.  相似文献   

12.
Gap junction communication in some cells has been shown to be inhibited by pp60v-src, a protein tyrosine kinase encoded by the viral oncogene v-src. The gap junction protein connexin43 (Cx43) has been shown to be phosphorylated on serine in the absence of pp60v-src and on both serine and tyrosine in cells expressing pp60v-src. However, it is not known if the effect of v-src expression on communication results directly from tyrosine phosphorylation of the Cx43 or indirectly, for example, by activation of other second-messenger systems. In addition, the effect of v-src expression on communication based on other connexins has not been examined. We have used a functional expression system consisting of paired Xenopus oocytes to examine the effect of v-src expression on the regulation of communication by gap junctions comprised of different connexins. Expression of pp60v-src completely blocked the communication induced by Cx43 but had only a modest effect on communication induced by connexin32 (Cx32). Phosphoamino acid analysis showed that pp60v-src induced tyrosine phosphorylation of Cx43, but not Cx32. A mutation replacing tyrosine 265 of Cx43 with phenylalanine abolished both the inhibition of communication and the tyrosine phosphorylation induced by pp60v-src without affecting the ability of this protein to form gap junctions. These data show that the effect of pp60v-src on gap junctional communication is connexin specific and that the inhibition of Cx43-mediated junctional communication by pp60v-src requires tyrosine phosphorylation of Cx43.  相似文献   

13.
Modulation of gap junction structures and gap junctional communication is important in maintaining tissue homeostasis and can be controlled via phosphorylation of connexin 43 (Cx43) through several different signaling pathways. Transformation of cells by v-src has been shown to down-regulate gap junction communication coincident with an increase in tyrosine phosphorylation on Cx43. Activation of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) also lead to down-regulation via phosphorylation on specific serine residues. Using phosphospecific anti-Cx43 antibodies generated by the authors' laboratory to specific tyrosines (src substrates) and serine residues (MAPK and PKC substrates) to probe LA-25 cells (which express temperature-sensitive v-src), the authors show that distinct tyrosine and serines residues are phosphorylated in response to v-src activity. They show that tyrosine phosphorylation appears to occur predominantly in gap junction plaques when src is active. In addition, src activation led to increased phosphorylation of apparent MAPK and PKC sites in Cx43. These results indicate all three signaling pathways could contribute to gap junction down-regulation during src transformation in LA-25 cells.  相似文献   

14.
Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of Cxs of only 1–5 h, resulting in constant endocytosis and biosynthetic replacement of gap junction channels, has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256–289), a region known to encode key residues regulating gap junction turnover, is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication. Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques, and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that continuous Cx43 gap junction endocytosis is an essential aspect of gap junction function and, when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function.  相似文献   

15.
Phosphoamino acid analysis of mouse connexin45 (Cx45) expressed in human HeLa cells revealed that phosphorylation occurred mainly at serine residues, but also on tyrosine and threonine residues. To characterize the role of Cx45 phosphorylation, different serine residues of the serine-rich carboxy terminal region were deleted or exchanged for other amino acids residues. Human HeLa cells deficient in gap junctional intercellular communication were stably transfected with appropriate constructs and analyzed for expression, localization, phosphorylation, formation of functional gap junction channels and degradation of mutant Cx45. After exchange or deletion of nine carboxy terminal serine residues, phosphorylation was decreased by 90%, indicating that these serine residues represented main phosphorylation sites of mouse Cx45. The various serine residues of this region contributed differently to the phosphorylation of Cx45 suggesting a cooperative mechanism for phosphorylation. Substitution of different serine residues for other amino acids did not interfere with correct intracellular trafficking and assembly of functional gap junction channels, as shown by localization of mutant Cx45 at the plasma membrane and by dye transfer to neighboring cells. Truncated Cx45 was also weakly phosphorylated but was trapped in perinuclear locations. Dye transfer of these transfectants was similar as in nontransfected HeLa cells. The half-life of mouse Cx45 protein in HeLa cells was determined as 4.2 hr. Pulse-chase experiments with the different transfectants revealed an increased turnover of Cx45, when one or both of the serine residues at positions 381 and 382 or 384 and 385 were exchanged for other amino acids. The half-life of these mutants was diminished by 50% compared to wild type Cx45. Received: 26 September 1997/Revised: 5 January 1997  相似文献   

16.
In the human heart, ventricular myocytes express connexin 43 (Cx43) and traces of Cx45. In congestive heart failure, Cx43 levels decrease, Cx45 levels increase and gap junction size decreases. To determine whether alterations of connexin coexpression ratio influence gap junction size, we engineered a rat liver epithelial cell line that endogenously expresses Cx43 to coexpress inducible levels of Cx45 under stimulation of the insect hormone, ponasterone A. In cells induced to express Cx45, gap junction sizes are significantly reduced (by 15% to 20%; p < 0.001), an effect that occurs despite increased levels of junctional connexons made from both connexins. In contrast, coexpression of Cx40 with Cx43 does not lead to any change in gap junction size. These results are consistent with the idea that increased Cx45 expression in the failing ventricle contributes to decreased gap junction size.  相似文献   

17.
Phosphorylation at unspecified sites is known to regulate the life cycle (assembly, gating, and turnover) of the gap junction protein, Cx43. In this paper, we show that Cx43 is phosphorylated on S365 in cultured cells and heart tissue. Nuclear magnetic resonance structural studies of the C-terminal region of Cx43 with an S365D mutation indicate that it forms a different stable conformation than unphosphorylated wild-type Cx43. Immunolabeling with an antibody specific for Cx43 phosphorylated at S365 shows staining on gap junction structures in heart tissue that is lost upon hypoxia when Cx43 is no longer specifically localized to the intercalated disk. Efficient phosphorylation at S368, an important Cx43 channel regulatory event that increases during ischemia or PKC activation, depends on S365 being unphosphorylated. Thus, phosphorylation at S365 can serve a “gatekeeper” function that may represent a mechanism to protect cells from ischemia and phorbol ester-induced down-regulation of channel conductance.  相似文献   

18.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

19.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号