首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of tentoxin on the binding of adenine nucleotides to soluble chloroplast coupling factor (CF1) has been studied and the following results have been obtained: 1. Tentoxin (400 micron) increases the maximum attainable tight binding of ADP to CF1. In the absence of tentoxin, the maximal binding observed by the method employed is about 0.3 nmol ADP/mg protein, whereas in the presence of tentoxin this ranges from 1.5 to 2.0 nmol ADP/mg protein. 2. Tentoxin-induced binding of ADP to CF1 is severely inhibited by divalent cations (50% inhibition at about 2 mM) but only weakly inhibited by monovalent cations (less than 50% inhibition at 100 mM). 3. The binding of ADP to CF1 induced by tentoxin is inhibited by ATP and adenylyl imidodiphosphate but is not inhibited by other nucleotides including AMP, GDP, CDP, IDP, or beta, gamma-methylene ATP. 4. The ADP-CF1 complex induced by tentoxin is quite stable. 75% remains bound to CF1 even after passage of the complex through a gel filtration column. An additional 25% can be removed by incubation in the presence of ADP, and all of the bound ADP can be removed only after incubation in the presence of both tentoxin and ADP. The latter result is interpreted as a tentoxin-induced exchange of bound ADP for medium ADP.  相似文献   

2.
3.
4.
5.
The activation of the ATPase activity of coupling factor 1 (CF1) from chloroplasts by several detergents was studied. Further evidence that detergent micelles are important in the activation of Ca2+-ATPase was obtained. Maximal activation of CA2+-ATPase was achieved with short-chain alkyl-beta-D-glucopyranoside (alkylglucosides) detergents. Treatment of CF1 with hexylglucoside or heptylglucoside followed by hydroxylapatite chromatography caused nearly total removal of the epsilon subunit of the enzyme, whereas treatment with decylglucoside caused less ATPase activation and less loss of the epsilon subunit. The ATPase activity of detergent-activated CF1 was inhibited by purified epsilon subunit. Detergents that form small micelles appear to be most effective in removing the epsilon subunit and in activating the Ca2+-ATPase of CF1. When present during assay, the alkylglucosides also induce a Mg2+-ATPase activity in CF1. Octyl- and nonylglucoside are most effective in promoting this reaction. If, however, CF1 deficient in the epsilon subunit was used, even decylglucoside elicited rapid Mg2+-ATPase hydrolysis. It is concluded that removal of the epsilon subunit, although necessary for the expression of Mg2+-ATPase, is not sufficient. The detergents that cause maximal displacement of the epsilon subunit are less effective in inducing Mg2+-ATPase activity. The selective removal of subunits from CF1 by specific detergents points to potential problems with the use of these detergents in the solubilization of oligomeric membrane proteins.  相似文献   

6.
7.
8.
L C Cantley  G G Hammes 《Biochemistry》1975,14(13):2968-2975
A study of the equilibrium binding of ADP, 1,N6-ethenoadenosine diphosphate, adenylyl imidodiphosphate, and 1,N6-ethenoadenylyl imidodiphosphate to solubilized spinach chloroplast coupling factor 1 (CF1) has been carried out. All four nucleotides were found to bind to two apparently identical "tight" sites, with characteristic dissociation contants generally less than 10 muM. The binding to these "tight" sites is similar in the presence of Mg2+ and Ca2+, is stronger in 0.1 M NaC1 than in 20 mM Tris-C1, and is only slightly altered by heat activation. The slow rate of association of ADP and 1,N6-ethenoadenosine diphosphate at these sites rules out the possibility that they are catalytic sites for ATPase activity on the solubilized enzyme. A third tight site for adenylyl imidodiphosphate was found on the heat-activated enzyme. The dissociation constant for this interaction (7.6 muM) is similar to the adenylyl imidodiphosphate competitive inhibition constant for ATPase activity (4 muM). ADP, which inhibits ATPase activity but is not a strong competitive inhibitor, binds only weakly at a third site (dissociation constant greater than 70 muM). One mole of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted per mole of CF1 prevents ADP and adenylyl imidodiphosphate binding at the "catalytic" site and abolishes the ATPase activity. A model is proposed in which the "tight" nucleotide binding sites act as allosteric conformational switches for the ATPase activity of solubilizedCF1.  相似文献   

9.
Four tight nucleotide binding sites of chloroplast coupling factor 1.   总被引:1,自引:0,他引:1  
We have examined the properties of the four tight nucleotide binding sites of reductively activated chloroplast coupling factor 1. Tight sites are here defined as those which retain bound nucleotides after passage of the chloroplast coupling factor 1 through Sephadex gel filtration centrifuge columns. Two of the sites, here called sites 4 and 5, have not been characterized in detail before. Site 4 has properties similar to those of site 1. It binds to ADP, ATP, and adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) tightly in the presence or absence of Mg2+. Bound ADP exchanges rapidly with medium ADP, but rapid exchange with ATP or AMP-PNP requires Mg2+. Site 4 may slowly hydrolyze bound ATP in the absence of medium nucleotides. Site 5 has properties similar to those of site 2. Tight binding of ATP and AMP-PNP requires Mg2+, but Mg29+)-ADP is not tightly bound. Site 5 does not hydrolyze bound ATP in the absence of medium nucleotides. Complete filling of all four tight nucleotide binding sites requires about one millimolar nucleotide, suggesting that low affinity binding sites are converted to tight binding via a nucleotide binding-induced conformational change.  相似文献   

10.
1. [14C]ADP is incorporated into washed broken chloroplasts in the light. The bound labelled nucleotides which cannot be removed by washing are almost exclusively related to coupling factor CF1. [14C]ADP binding exhibits a monophasic concentration curve with a Km of 2 μM.2. By illumination of the chloroplasts, previously incorporated labelled nucleotides are released. A fast release is obtained in the presence of unlabelled ADP and ATP, indicating an energy-dependent exchange. A slow and incomplete release is induced by light in the absence of unlabelled adenine nucleotides. Obviously, under those conditions, an adenine nucleotide depleted CF1 conformation is established.3. Re-binding of [14C]ADP by depleted membranes is an energy-independent process. Even after solubilization of adenylate-depleted CF1, [14C]ADP is incorporated into the protein. By re-binding of ADP in the dark, CF1 is converted to a non-exchangeable form.4. Energy-dependent adenine nucleotide exchange on CF1 is suggested to include three different conformational states of the enzyme: (1) a stable, non-exchangeable form which contains firmly bound nucleotides, is converted to (2), an unstable form containing loosely bound adenine nucleotides. This conformation allows adenylate exchange; it is in equilibrium with (3) a metastable, adenylate-depleted form. The transition from state (1) to state (2) is the energy-requiring step.  相似文献   

11.
Y Hochman  A Lanir  C Carmeli 《FEBS letters》1976,61(2):255-259
Although 150 individual samples of milk from Italian water buffalo (Bubalus arnee) were examined by acid and alkaline gel electrophoresis, no polymorphism was observed for α-lactalbumin and β-lactoglobulin. After isolation and purification of these two proteins their amino acid compositions were determined and compared with those of the corresponding bovine proteins. The sequence alignments of 36 and 17 amino-acids from the N-terminal ends and 2 amino-acids from the C-terminal ends of buffalo α-lactalbumin and β-lactoglobulin, respectively, have been established. Our results indicate that buffalo α-lactalbumin differs from its cow B counterpart by a substitution Asn/Gly at position 17 and by another substitution, likely Glu/Gln or Asp/Asn, at an unknown position. Buffalo β-lactoglobulin is homologous to the bovine B variant. Three substitutions differentiate the two proteins: Ile/Leu and Val/Ile at positions 1 and 162 respectively; a further one, Gln/Ile, has not yet been located. According to these results the B variant of bovine β-lactoglobulin might be the wild type of the Bos genus.  相似文献   

12.
Dark-grown non-dividing cells of Euglena gracilis Klebs var. bacillaris Cori were exposed to light for up to 72 h and thylakoid membrane fractions were isolated by sedimentation in sucrose step gradients at various stages of development. The membrane-bound coupling factor (CF1)-ATPase activity of these prothylakoids (0 h of light) and developing thylakoid membranes (12 to 72 h of light) was characterized by its cation specificity and sensitivity to inhibitors. The enzyme at all stages of development was activated by Mg2+ and to a lesser extent by Ca2+; Mn2+ was found to activate, as well as or better than Mg2 + at comparable concentrations. The activity of the enzyme was almost completely inhibited by dicyclohexylcarbodiimide (DCCD; 0.3 mM), but was insensitive to oligomycin, valinomycin and carbonyl cyanide P-trifluoromethoxyphenylhydrazone (FCCP). Low concentrations of NH4CI gave a slight stimulation of enzyme activity, whereas high concentrations of the uncoupler were inhibitory. The specific activity of the membrane-bound CF,-ATPase was highest in prothylakoid membranes. Specific activity decreased on a thylakoid protein or chlorophyll basis during the first 12 h of development, and achieved a steady state level by 48 h following light induction. Estimates of total CF1-ATPase activity per cell indicate that the time for major synthesis of the enzyme is between 12 and 3d h ol development. These results suggest that following an initial lag period in membrane development lasting about 12 h, there is a formation of CF1-ATPase that accompanies further thylakoid membrane development.  相似文献   

13.
Exchange of 500–600 atoms of 3H per mol of solubilized spinach chloroplast coupling factor (CF1) occurs when the enzyme is incubated for 4 min in 3H2O at 63°C. These 3H atoms are bound in parts of the protein where exchange is hindered by the three-dimensional structure at 25°C. Back-exchange at 25°C shows complex kinetics, with at least two kinetic components having half-times of 1.4 and 40 h, respectively. Back-exchange from the denatured enzyme is extremely rapid with an apparent half-time of the order of 20–30 s. The time courses for exchange and ATPase activation are very similar at 63°C, and reasonably close at 25°C. Both reactions have an optimum temperature of 60°C when measured after 4 min. Activation of ATPase requires a strong reducing agent to be present, but this is not needed for hydrogen exchange. It is suggested that an open conformation of CF1 induced by heat may be a required intermediate for the rapid activation of ATPase, being a sporadic and rare occurrence at 25°C but also a required step in ATPase activation. This open conformation could be related to that induced in bound CF1 by thylakoid membrane energization.  相似文献   

14.
15.
The effects of solvents on the ATPase activity of chloroplast coupling factor 1 (CF1) isolated from wild-type Chlamydomonas reinhardii have been studied. Of the solvents examined, the following order summarizes their maximal ability to stimulate the ATPase activity of CF1: ethanol > methanol>allyl alcohol >n-propanol > acetone≈dioxane > ethylene glycol. Glycerol inhibits the CF1 activity at all concentrations. In the absence of organic solvents, 50% of the activity of the enzyme is irreversibly lost after a 10 min incubation at 65–70°C. Ethanol (23%) causes a 30°C drop in the temperature required for 50% inactivation. ATP partially stabilizes the CF1 in the presence, but not in the absence, of ethanol. In the absence of organic solvents, both free Mg2+ and ADP inhibit the CF1-ATPase. Mg2+ is a noncompetitive inhibitor with respect to MgATP, and the kinetic constants are: V, 6.3 μmol ATP hydrolyzed/mg protein per min; Km(MgATP), 0.23 mM; Kii(Mg2+), 27 μM; and Kis(Mg2+), 50 μM. In the presence of ethanol, double-reciprocal plots are no longer linear and have a Hill coefficient of about 1.8±0.1. V increases about 10–12-fold. The pattern of inhibition by Mg2+ appears to change from noncompetitive to competitive with respect to MgATP. In addition, ADP no longer inhibits the MgATPase activity of CF1.  相似文献   

16.
Incubation of chloroplast coupling factor with 5′-p-fluorosulfonylbenzoyl adenosine in the 1 to 2 mM range inhibits subsequently measured ATPase activity. The inhibition is probably due to covalent binding since it survives ammonium sulfate fractionation and dialysis. The kinetics of the inhibited enzyme with respect to substrate show a decrease in Vmax with no change in Km for ATP. The presence of ATP or ADP together with the inhibitor provides some protection against inhibition. The results suggest a possible covalent attack at a nucleotide binding site, leading to inhibition of activity.  相似文献   

17.
The method of centrifugation of chloroplast thylakoids through silicone fluid, previously used to estimate the uptake of solutes by thylakoids, is shown to be an excellent method for measuring binding of nucleotides to thylakoids. This binding, which is probably an exchange (Harris, D. A. and Slater, E. C. (1975) Biochim. Biophys. Acta 387, 335-348), is enhanced by light and is sensitive to uncoupling. Half-maximal binding of adenosine 5'-triphosphate (ATP) or adenosine 5'-diphosphate (ADP) at 10 mjM was reached within less than 0.1 s. With illumination times sufficient to elicit maximal binding, saturation of the site(s) is approached at 20 muM nucleotide and dissociation constants of 5 muM and 7 muM were calculated for ADP and ATP, respectively. At saturation, the binding corresponds to 1 mol/mol of coupling factor 1 or less. Although the light-dependent binding of ADP does not require Mg2+, that of ATP is markedly enhanced by Mg2+. A 10-fold molar excess of guanosine di- or triphosphate or adenyl-5'-yl imidodiphosphate had little effect on the binding. Adenosine 5'-phosphosulfate, a competitive inhibitor of phosphorylation with respect to ADP, decreases the binding. Thylakoids, previously illuminated in the absence of added nucleotides, retain the capacity to bind ADP or ATP in the dark long after the H+ electrochemical gradient has decayed. The conformation of coupling factor 1 in darkened thylakoids following illumination in the absence of added nucleotides may thus differ from that in thylakoids either illuminated in the presence of nucleotides or kept in the dark. Approximately 20% of the ADP bound to coupling factor 1 in thylakoids is converted to ATP by a 2-s illumination. Bound inorganic phosphate, derived either from ATP or from inorganic phosphate itself, serves as the phosphoryl donor. Bound ADP may, therefore, be of catalytic significance in the mechanism of phosphorylation.  相似文献   

18.
19.
K M Musier  G G Hammes 《Biochemistry》1987,26(19):5982-5988
New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl)dodecanamide, and 12-[14C]maleimido-N-(4-benzoylphenyl)dodecanamide, were synthesized to investigate the mechanism of ATP hydrolysis by chloroplast coupling factor 1. These reagents react with sulfhydryl groups on the gamma-polypeptide. Subsequent photolysis cross-links the gamma-polypeptide covalently to alpha- and beta-polypeptides. The cross-linkers prevent major movements of the gamma-polypeptide with respect to the alpha- and beta-polypeptides but are sufficiently long to permit some flexibility in the enzyme structure. When approximately 50% of the gamma-polypeptide was cross-linked to alpha- and beta-polypeptides, a 7% loss in ATPase activity was observed for the longer cross-linker and a 12% loss for the shorter. These results indicate that large movements of alpha- and beta-polypeptides with respect to the gamma-polypeptide are not essential for catalysis. In particular, rotation of the polypeptide chains to create structurally equivalent sites during catalysis is not a required feature of the enzyme mechanism.  相似文献   

20.
Activation of the ATPase activity and the exposition of a new adenine nucleotide binding site of chloroplast coupling factor 1 (CF1) by dithioerythritol at 25 degrees C were reversed by oxidants. The ATPase activity elicited by heat (63 degrees C, 4 min) was slightly inhibited by oxidants and was partially additive with the activity induced by dithioerythritol. Titration of the thiols of CF1 and determination of their subunit distribution before and after activation by dithioerythritol show an increase of the free groups from 8 to 10 with the appearance of the 2 new thiols on the gamma subunit. These thiols were available to reagents in nondenatured enzyme and were reoxidized to a disulfide bond by iodosobenzoate or CuCl2. It is concluded that the mechanisms of CF1 activation by dithioerythritol and by heat are different and that the former involves a net reduction of a disulfide bond of the gamma subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号