首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Infection of cells with herpes simplex virus type 1 (HSV-1) induces high levels of deoxypyrimidine triphosphatase. The majority of the enzyme activity is found in infected cell nuclei. A similar activity is induced by HSV type 2 (HSV-2) which, in contrast to the HSV-1 enzyme, fractionates to more than 99% in the soluble cytoplasmic extract. Of a series of temperature-sensitive mutants of HSV-1 studied, only the immediate-early mutants in complementation group 1-2 (strain 17 mutants tsD and tsK and strain KOS mutant tsB2) induced reduced levels of triphosphatase at nonpermissive temperature. Of a series of temperature-sensitive mutants of HSV-2 strain HG52, ts9 and ts13 failed to induce wild-type levels of the enzyme at nonpermissive temperature; ts9 was the most defective mutant with regard to triphosphatase expression of both herpes simplex virus serotypes. After shift-up from permissive to nonpermissive temperature, triphosphatase activity in cells infected with ts9 decreased rapidly, whereas all other mutants continued to exhibit enzyme levels comparable with controls kept at the permissive temperature. The type 1-specific nuclear expression of the triphosphatase was mapped physically by the use of HSV-1 x HSV-2 intertypic recombinants, based on enzyme levels different by more than two orders of magnitude found in nuclei of HSV-1- and HSV-2-infected cells. The locus for the type-specific expression maps between 0.67 and 0.68 fractional length on the HSV genome.  相似文献   

3.
Treatment of herpes simplex virus type 1 (HSV-1)-infected human embryo lung (HEL) cells with phosphonoacetic acid (PAA) resulted in complete inhibition of HSV DNA replication. DNA was extracted from PAA-treated HEL cells infected with HSV-1 and centrifuged in a neutral CsCl density gradient. The HSV DNA sequences in the nuclei of PAA treated cells at 24 hr post infection banded at the same density as free HSV DNA (1.725 g/cm3), but a significant amount of viral DNA sequences were detected in the regions of cell DNA (1.700 g/cm3) as well as in the intermediate fractions as determined by hybridization with 3H HSV complementary RNA. The viral DNA sequences of lower deisntiy did not change in density by recentrifugation in a CsCl density gradient, but did change to the density of free viral DNA after treatment with EcoR1 restriction endonuclease. When the DNA from the nuclei of PAA treated cells was analyzed in an alkaline glycerol gradient, more than 95% of the viral DNA sequences were found in the free viral DNA fractions. Since the viral and cellular hybrid DNA represented approximately 33% of the total viral DNA sequences, it is concluded that some of the HSV DNA sequences in PAA treated, infected cells are associated with cell DNA by alkali-labile bonds.  相似文献   

4.
Lactoperoxidase-catalyzed radioiodination was used to study reactions between surface antigens and antibodies on BHK-21 cells infected with HSV-1 and HSV-2. Isolation of iodinated surface antigens was achieved by indirect immune precipitation of Triton X-100 disrupted cells with antisera to HSV and IgG. Analysis of immune precipitates by polyacrylamide gel electrophoresis (PAGE) revealed at least 10 antigens, ranging in m.w. from 35 x 103 to 160 x 103 daltons. Antigens were detectable on cell surfaces as early as 2 hr post-infection. Electrophoretic patterns of surface antigens induced by HSV-1 were similar to those induced by HSV-2. In both cases the major portion of activity was associated with glycoprotein(s) in the range of 115 x 103 to 130 x 103 daltons. A reduced amount of radioactivity was obtained if cells were reacted with anti-HSV sera before disruption with Triton X-100, suggesting that less surface antigen was accessible to HSV antibody applied directly to intact cells.  相似文献   

5.
Human cytotoxic T cell (CTL) clones specific for herpes simplex virus (HSV) type 1- and type 2-infected cells were generated and were analyzed with regard to the viral glycoproteins they recognize on autologous HSV-infected cells. By use of target cells infected with wild-type HSV strains, a gC deletion mutant of HSV-1, and HSV-1 X HSV-2 intertypic recombinants, some HSV-1-specific CTL clones were found to be directed against L region-encoded gA/B-1, and others against S region-encoded glycoproteins (gD-1 or gE-1). Some HSV-2-specific clones were found to be directed against L region-encoded gC-2, whereas others were directed against S region-encoded glycoproteins (gD-2, gE-2, or gG). These findings provide direct evidence that several HSV glycoproteins that are expressed on the surface of HSV-infected cells serve as recognition structures for human HSV-specific CTL.  相似文献   

6.
The phenomenon of antibody-dependent cell-mediated cytoxicity (ADCC) has been extended to include target cells acutely infected with herpes simplex type 1 virus (HSV-1) or herpes simplex type 2 virus (HSV-2) in an in vitro system that employs immune human serum and human blood mononuclear cells. The cytotoxic reaction was detectable after 1 hr of incubation and was complete between 4 and 8 hr. The amount of ADCC noted was directly proportional to the logarithm(10) of the effector: target cell ratio (E:T), and ADCC was noted at E:T as low as 1:1. The mononuclear effector cell was present in the blood of both HSV immune and non-immune individuals. The immune serum factor was demonstrated to be an antibody with specificity for HSV membrane antigen(s) and was reactive with target cells infected with either of the two HSV types. The antibody rendered the mononuclear cell cytotoxic by sensitization of the target cell rather than by direct attachment to or "arming" of the mononuclear cell. The physiochemical properties of the antibody as well as its presence in cord blood demonstrated that it is an immunoglobulin on the IgG class.  相似文献   

7.
目的:探讨疱疹病毒Ⅱ型(HSV-2)感染人神经母细胞瘤细胞株SH-SY5Y的生物学效应。方法:病毒液接种SH-SY5Y细胞后,用相差和电子显微镜观察感染细胞的形态变化,RT-PCR检测病毒在细胞中的增殖,MTT法检测病毒感染对细胞增殖的影响,流式细胞仪测定感染后的细胞凋亡状况。结果:相差显微镜显示细胞病变,从24~72h,细胞变性、坏死的程度和数量随感染时间延长而增加;电镜结果显示感染24h后,细胞核染色质固缩,出现多核巨细胞,线粒体内嵴紊乱、断裂,出现不同程度的自噬化、溶酶体化、空泡化,并可见大量鹰眼样已包装成熟的病毒颗粒及正在包装的病毒粒子;HSV-2LAT基因RT-PCR扩增表明,病毒能在SH-SY5Y细胞中增殖;凋亡检测显示HSV-2在体外细胞感染中并未使细胞出现凋亡现象;感染后24、48及72h,SH-SY5Y细胞的抑制率分别为11.3%、31.2%和63.1%,与对照组相比均存在显著性差异(P〈0.05);分别用0.1、1、10MOI的病毒感染SH-SY5Y细胞,上述不同组在24、48、72h时细胞形态变化基本一致,感染结果相似,各组之间病毒毒力无明显差异(P〉0.05)。结论:初步在人神经母细胞瘤细胞株SH—SY5Y中建立了HSV-2感染的细胞模型,并研究了感染对细胞生物性状的影响,为探讨HSV-2的潜伏与激发机制、了解HSV-2的致病机制打下基础。  相似文献   

8.
Mode of action of phosphonoformate as an anti-herpes simplex virus agent   总被引:1,自引:0,他引:1  
Phosphonoformate inhibited the replication of Herpes simplex virus (HSV) type 1 and type 2 in culture. The concentration required to inhibit the replication of both types of virus by 2 logs at 28 h post-infection was approximately 150 microM. It was more potent than phosphonoacetate against the growth of both virus types. A virus mutant which is resistant to phosphonoacetate was cross-resistant to phosphonoformate. Arsonoacetate, at 300 microM, had no antivirus activity. Phosphonoformate also inhibited HeLa and KB cell growth; at a concentration of about 500 microM, cell growth was inhibited by 50%. The anti-cell growth effects of the drug were completely reversible. The antivirus effect of phosphonoformate was partially reversible, depending on the time and duration of exposure of infected cultures to the drug. To obtain the maximum antivirus effect, phosphonoformate had to be added within the first 3 h post-virus-infection and be continuously present for at least 18 h. Phosphonoformate, added at 0 h post-infection, suppressed the induction of virus-specific DNA polymerase and DNAase activities. dTMP incorporation into DNA was preferentially inhibited in nuclei isolated from infected cells compared to uninfected cells, and the degree of inhibition varied with the ionic strength of the assay. Phosphonoformate was a potent inhibitor of the purified HSV-1 and HSV-2 DNA polymerases, inhibiting DNA polymerase activity by 50% at a concentration of 3 microM and ionic strength of 0.2.  相似文献   

9.
A monoclonal antibody defines an antigen, p68, related to hsp70, which is located in nuclei of uninfected exponential cells. Nuclear p68 is released by DNase but not RNase treatment suggesting an association with DNA. Lytic productive infection of confluent quiescent BHK 21 cells with herpes simplex virus type-2 causes p68 to accumulate in nuclei. The effect is specific for HSV-2, and does not occur in HSV-1 infected cells. Maximum nuclear accumulation of p68 requires virus DNA synthesis although a significant accumulation occurs in the absence of such synthesis. It is suggested that the nuclear accumulation of p68 is an aspect of a cellular stress response to lytic infection with HSV-2.Imperial Cancer Research Fund, Tumour Immunology Unit.  相似文献   

10.
The major 70 kDa heat shock protein (HSP70), which is scarcely expressed in unstressed rodent cells, was apparently induced by infection with herpes simplex virus (HSV). Infection with HSV types 1 and 2 elevated HSP70 mRNA levels within 4 hr post-infection. HSP70 synthesis and accumulation increased in HSV-infected cells. Irradiation of HSV with UV-light abolished the ability to induce HSP70 mRNA. Inhibitors of viral DNA synthesis did not affect the induction of HSP70 in infected cells. Protein synthesis within 2 hr after infection was necessary for HSP70 induction.  相似文献   

11.
Transformation of mouse cells (Ltk(-)) and human cells (HeLa Bu) from a thymidine kinase (TK)-minus to a TK(+) phenotype (herpes simplex virus [HSV]-transformed cells) has been induced by infection with ultraviolet-irradiated HSV type 2 (HSV-2), as well as by HSV type 1 (HSV-1). Medium containing methotrexate, thymidine, adenine, guanosine, and glycine was used to select for cells able to utilize exogenous thymidine. We have determined the kinetics of thermal inactivation of TK from cells lytically infected with HSV-1 or HSV-2 and from HSV-1- and HSV-2-transformed cells. Three hours of incubation at 41 C produces a 20-fold decrease in the TK activity of cell extracts from HSV-2-transformed cells and Ltk(-) cells lytically infected with HSV-2. The same conditions produce only a twofold decrease in the TK activities from HSV-1-transformed cells and cells lytically infected with HSV-1. This finding supports the hypothesis that an HSV structural gene coding for TK has been incorporated in the HSV-transformed cells.  相似文献   

12.
Reaction intermediates formed during the degradation of linear PM2, T5, and λ DNA by herpes simplex virus (HSV) DNase have been examined by agarose gel electrophoresis. Digestion of T5 DNA by HSV type 2 (HSV-2) DNase in the presence of Mn2+ (endonuclease only) gave rise to 6 major and 12 minor fragments. Some of the fragments produced correspond to those observed after cleavage of T5 DNA by the single-strand-specific S1 nuclease, indicating that the HSV DNase rapidly cleaves opposite a nick or gap in a duplex DNA molecule. In contrast, HSV DNase did not produce distinct fragments upon digestion of linear PM2 or λ DNA, which do not contain nicks. In the presence of Mg2+, when both endonuclease and exonuclease activities of the HSV DNase occur, most of the same distinct fragments from digestion of T5 DNA were observed. However, these fragments were then further degraded preferentially from the ends, presumably by the action of the exonuclease activity. Unit-length λ DNA, EcoRI restriction fragments of λ DNA, and linear PM2 DNA were also degraded from the ends by HSV DNase in the same manner. Previous studies have suggested that the HSV exonuclease degrades in the 3′ → 5′ direction. If this is correct, and since only 5′-monophosphate nucleosides are produced, then HSV DNase should “activate” DNA for DNA polymerase. However, unlike pancreatic DNase I, neither HSV-1 nor HSV-2 DNase, in the presence of Mg2+ or Mn2+, activated calf thymus DNA for HSV DNA polymerase. This suggests that HSV DNase degrades both strands of a linear double-stranded DNA molecule from the same end at about the same rate. That is, HSV DNase is apparently capable of degrading DNA strands in the 3′ → 5′ direction as well as in the 5′ → 3′ direction, yielding progressively smaller double-stranded molecules with flush ends. Except with minor differences, HSV-1 and HSV-2 DNases act in a similar manner.  相似文献   

13.
Highly phosphorylated proteins detectable by their ability to bind bismuth ions were localized in rabbit fibroblasts before and during infection with Herpes simplex viruses type 1 and type 2. The bismuth tartrate procedure of Locke and Huie applied to glutaraldehyde-fixed cells revealed a low level of bismuth binding in a restricted portion of the normal nucleolus in non-infected cells. From 2.5-17 hr post-infection during virus development and maturation, the phosphorylated proteins were more widespread and the intensity of reaction was augmented. Bismuth deposits were then associated with virus-modified pre-existing structures including all of the nucleolar fibrils, the more abundant interchromatin granules, reduplications of some areas of the inner nuclear membrane and the Golgi apparatus. Virus-induced structures which were stained included nuclear dense bodies, the teguments of enveloped virions and the contents of extranuclear enveloped structures devoid of capsids. Following detergent-induced destruction of membranes, staining was lost from the nuclear envelope and cytoplasmic virions, which demonstrated that the highly phosphorylated proteins were tightly bound to nuclear and viral membranes. Bismuth staining of nitrocellulose sheets containing proteins extracted from whole cells revealed no reaction in normal cells but three positive bands were found in infected cells.  相似文献   

14.
Human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of herpes simplex virus type 1 (HSV-1). A delay in HSV replication of 15 h as well as a consistent, almost 3 log inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 h after superinfection were observed compared with controls infected with HSV alone. Treatment of HCMV-infected HEL cells with cycloheximide (100 micrograms/ml) for 3 or 24 h, conditions known to result in accumulation of HCMV immediate-early and early mRNA, was demonstrated effective in blocking HCMV protein synthesis, as shown by immunoprecipitation with HCMV antibody-positive polyvalent serum. Cycloheximide treatment of HCMV-infected HEL cells and removal of the cycloheximide block before superinfection inhibited HSV-1 replication more efficiently than non-drug-treated superinfected controls. HCMV DNA-negative temperature-sensitive mutants restricted HSV as efficiently as wild-type HCMV suggesting that immediate-early and/or early events which occur before viral DNA synthesis are sufficient for inhibition of HSV. Inhibition of HSV-1 in HCMV-infected HEL cells was unaffected by elevated temperature (40.5 degrees C). However, prior UV irradiation of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HSV-2 replication was similarly inhibited in HCMV-infected HEL cells. However, replication of adenovirus, another DNA virus, was not restricted in these cells under the same conditions. Superinfection of HCMV-infected HEL cells with HSV-1 labeled with [3H]thymidine provided evidence that the labeled virus could penetrate to the nucleus of cells after superinfection. Evidence for penetration of superinfecting HSV into HCMV-infected cells was also provided by blot hybridization of HSV DNA synthesized in cells infected with HSV alone versus superinfected cell cultures at 0 and 48 h after superinfection. In addition, superinfection with vesicular stomatitis virus ruled out a role for interferon in restriction of HSV replication in this system.  相似文献   

15.
Human cytotoxic T lymphocyte (CTL) clones directed against herpes simplex virus (HSV)-infected cells were generated after stimulation of peripheral blood lymphocytes (PBL) with HSV type 1 (HSV-1) and HSV type 2 (HSV-2). These CTL clones were studied with regard to HSV type specificity and with regard to whether they also express helper cell activity. Some clones, generated after stimulation with HSV-1, were cytotoxic for autologous cells infected with either HSV-1 or HSV-2 ("HSV type common clones"), whereas other clones lysed HSV-1-infected cells only ("type-specific clones"). Similarly, after HSV-2 stimulation, both HSV-2 specific and HSV type common clones were obtained, indicating the heterogeneity of human cytotoxic T cells to HSV. All CTL clones tested were found to be bifunctional in that they also proliferated in response to stimulation with HSV. The HSV type specificity of the proliferative response was identical to that of the cytotoxic activity of the clones. An HSV type common clone, when stimulated with either HSV-1 or HSV-2, and an HSV-1 specific clone, when stimulated with HSV-1 but not with HSV-2, produced a factor, presumably interleukin 2 (IL 2), which induced proliferation of CTLL, an IL 2-dependent T cell line, providing evidence that our HSV-directed CTL clones also express helper cell activity. CTL clones that we previously reported were restricted in cytotoxic activity by HLA class II DR-1 or MB-1 antigens were found, in this study, to be restricted in proliferative response to HSV by these same HLA antigens. These results suggest that our bifunctional T cell clones directed against HSV may recognize the same viral antigenic determinants and the same HLA antigens for both cytotoxic and virus-induced proliferative activities. This is the first demonstration of human HSV type specific and HSV type common T cell clones and HSV specific T cell clones with both cytotoxic and helper cell activities.  相似文献   

16.
We constructed a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) clone, bHSV2-BAC38, which contains full-length HSV-2 inserted into a BAC vector. Unlike previously reported HSV-2 BAC clones, the virus genome inserted into this BAC clone has no known gene disruptions. Virus derived from the BAC clone had a wild-type phenotype for growth in vitro and for acute infection, latency, and reactivation in mice. HVEM, expressed on epithelial cells and lymphocytes, and nectin-1, expressed on neurons and epithelial cells, are the two principal receptors used by HSV to enter cells. We used the HSV-2 BAC clone to construct an HSV-2 glycoprotein D mutant (HSV2-gD27) with point mutations in amino acids 215, 222, and 223, which are critical for the interaction of gD with nectin-1. HSV2-gD27 infected cells expressing HVEM, including a human epithelial cell line. However, the virus lost the ability to infect cells expressing only nectin-1, including neuronal cell lines, and did not infect ganglia in mice. Surprisingly, we found that HSV2-gD27 could not infect Vero cells unless we transduced the cells with a retrovirus expressing HVEM. High-level expression of HVEM in Vero cells also resulted in increased syncytia and enhanced cell-to-cell spread in cells infected with wild-type HSV-2. The inability of the HSV2-gD27 mutant to infect neuronal cells in vitro or sensory ganglia in mice after intramuscular inoculation suggests that this HSV-2 mutant might be an attractive candidate for a live attenuated HSV-2 vaccine.  相似文献   

17.
New Zealand White rabbits were immunized subcutaneously with partially purified UV-inactivated preparations of herpes simplex virus (HSV-1 or HSV-2) in complete Freund's adjuvant. After the initial immunizations, designated groups of animals received additional amounts of either HSV-1 or HSV-2 at 35-day intervals. Sera were absorbed with lysates of cells infected with heterotypic virus and the residual monotypic antibodies were detected by 51Cr-release assay using HSV-infected target cells. A positive correlation was found between the ratio of neutralizing antibodies to HSV-1 and HSV-2 (II/I index) and the content of monotypic antibodies. Results showed that production of monotypic antibodies to HSV-1 And HSV-2, under the conditions employed, was independent of previous exposure to HSV.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) infection of a rat central nervous system tumor cell line led to almost complete destruction of the cells. Cells that survived the infection could be isolated and shown to produce infectious HSV particles for variable lengths of time in culture ranging from 20 to 57 passages. Even though infectious virus production eventually ceased, the cell lines continued to produce herpes-specified proteins as measured by immunological techniques. These cells also showed herpesvirus-like structures in the electron microscope. The persistently infected cells that produced HSV antigens and bore HSV sequences were resistant to superinfection by HSV-1. The resistance was not due to failure of adsorption of the virus or to the production of interferon by the cells. The nature of the block in HSV replication in these neurotumor cells, which contain and partially express the HSV genome, is unknown, but may offer an interesting parallel to the known latency of HSV in neural tissues.  相似文献   

19.
Nucleolar B-36 protein was localized ultrastructurally by immunocytochemistry with monoclonal antibody P2G3 and colloidal gold label in rabbit fibroblast cells before and during infection with herpes simplex virus (HSV) type 1. In non-infected cells, labeling was sparse and restricted to the fibrillar component of the nucleoli. During the infectious cycle, B-36 protein appeared to be somewhat more abundant within the morphologically altered fibrillar component of the nucleoli. In addition, the protein was also detected in some but not all virus-induced intranuclear dense bodies. These observations suggest the presence of functionally distinct dense bodies. The association of B-36 protein with both structures was not disrupted by a hypotonic shock and detergent treatment, which suggest that these sites do not represent areas of passive intranuclear diffusion. Inhibition of protein synthesis late in infection, viral DNA replication or RNA synthesis did not alter the distribution of B-36 protein. We suggest that this protein may play a role in the increased compaction of the ribonucleoprotein fibrils induced by HSV infection, perhaps in association with some of the virus-encoded proteins which also have been detected in the nucleoli.  相似文献   

20.
Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccines studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccines proliferated following stimulation with gD-2, whereas stimulation with gD-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号