首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Myosin II is a central mechanoenzyme in a wide range of cellular morphogenic processes. Its cellular localization is dependent not only on signal transduction pathways, but also on mechanical stress. We suggest that this stress-dependent distribution is the result of both the force-dependent binding to actin filaments and cooperative interactions between bound myosin heads. By assuming that the binding of myosin heads induces and/or stabilizes local conformational changes in the actin filaments that enhances myosin II binding locally, we successfully simulate the cooperative binding of myosin to actin observed experimentally. In addition, we can interpret the cooperative interactions between myosin and actin cross-linking proteins observed in cellular mechanosensation, provided that a similar mechanism operates among different proteins. Finally, we present a model that couples cooperative interactions to the assembly dynamics of myosin bipolar thick filaments and that accounts for the transient behaviors of the myosin II accumulation during mechanosensation. This mechanism is likely to be general for a range of myosin II-dependent cellular mechanosensory processes.  相似文献   

2.
Short ClC3 isoform (sClC3) functions as a volume-sensitive outwardly rectifying anion channel (VSOAC) in some cell types. In previous studies, we have shown that the hypotonic activation of sClC3 is linked to cell swelling-mediated remodeling of the actin cytoskeleton. In the present study, we have tested the hypothesis that the cytosolic tails of sClC3 bind to actin directly and that binding modulates the hypotonic activation of the channel. Co-sedimentation assays in vitro demonstrated a strong binding between the glutathione S-transferase-fused cytosolic C terminus of sClC3 (GST-sClC3-CT) to filamentous actin (F-actin) but not to globular monomeric actin (G-actin). The GST-fused N terminus (GST-sClC3-NT) exhibited low binding affinity to both G- and F-actin. Co-sedimentation experiments with progressively truncated GST-sClC3-CT indicated that the F-actin binding region is located between amino acids 690 and 760 of sClC3. Two synthetic peptides mapping basic clusters of the cytosolic sClC3-CT (CTP2, isoleucine 716 to leucine 734; and CTP3, proline 688 to proline 709) prevented binding of GST-sClC3-CT to F-actin in vitro. Dialysis into NIH/3T3 cells of these two peptides (but not of synthetic peptide CTP1 (isoleucine 737 to glutamine 748)) reduced the maximal current density by 60 and 38%, respectively. Based on these results, we have concluded that, by direct interaction with subcortical actin filaments, sClC3 contributes to the hypotonic stress-induced VSOACs in NIH/3T3 cells.  相似文献   

3.
Vinculin and its splice variant, metavinculin (MV), are key elements of multiple protein assemblies linking the extracellular matrix to the actin cytoskeleton. Vinculin is expressed ubiquitously, whereas MV is mainly expressed in smooth and cardiac muscle tissue. The only difference in amino acid sequence between the isoforms is a 68-residue insert in the C-terminal tail domain of MV (MVt). Although the functional role of this insert remains elusive, its importance is exemplified by point mutations that are associated with dilated and hypertrophic cardiomyopathy. In vinculin, the actin binding site resides in the tail domain. In this paper, we show that MVt binds actin filaments similarly to the vinculin tail domain. Unlike its splice variant, MVt did not bundle actin filaments. Instead, MVt promoted severing of actin filaments, most efficiently at substoichiometric concentrations. This surprising and seemingly contradictory alteration of vinculin function by the 68-residue insert may be essential for modulating compliance of vinculin-induced actin bundles when exposed to rapidly increasing external forces.  相似文献   

4.
Evidence of direct interaction between actin and membrane lipids   总被引:3,自引:0,他引:3  
Actin is a protein component of the cystoskeleton and is involved in cell motility. It is believed generally that actin filaments are attached to the cell membrane through an interaction with membranous actin-binding proteins. By using an in vitro system composed of liposomes and actin, we have shown that actin may also interact directly with the phospholipids of the membrane. Actin deposited at the surface of the liposome is organized in two regular patterns: a paracrystalline sheet of parallel filaments in register, or a netlike organization. These interactions of actin with membrane lipids occur only in the presence of millimolar concentrations of Mg2+. These results suggest that the interaction of the cytoskeleton with the membrane involves, at least in part, a direct association of actin with phospholipids.  相似文献   

5.
A monoclonal antibody, A-7C11, was generated which reacts with two polypeptides of 40 kDa and 80 kDa associated with the coat proteins of purified brain clathirn-coated vesicles. The 40-kDa antigen was purified and found to display actin-binding properties. Negative-staining electron microscopy showed that one of the antigens reactive with A-7C11 appears to mediate the association of isolated clathrin-coated vesicles with assembling actin filaments in vitro. Immunofluorescence microscopy of cultured fibroblasts with A-7C11 revealed the antigens aligned with both actin filaments and as punctate structures near the plasma membrane. The data suggest that the interaction between clathrin-coated vesicles and the actin cytoskeleton is mediated by antigens identified by monoclonal antibody A-7C11.  相似文献   

6.
Shigella, the causative agent of bacillary dysentery, invades epithelial cells. Upon bacterial-cell contact, the type III bacterial effector IpaA binds to the cytoskeletal protein vinculin to promote actin reorganization required for efficient bacterial uptake. We show that the last 74 C-terminal residues of IpaA (A559) bind to human vinculin (HV) and promotes its association with actin filaments. Polymerisation experiments demonstrated that A559 was sufficient to induce HV-dependent partial capping of the barbed ends of actin filaments. These results suggest that IpaA regulates actin polymerisation/depolymerisation at sites of Shigella invasion by modulating the barbed end capping activity of vinculin.  相似文献   

7.
The interaction of the low-molecular-weight GTP-binding protein rap2 with the cytoskeleton from thrombin-aggregated platelets was investigated by inducing depolymerization of the actin filaments, followed by in vitro-promoted repolymerization. We found that the association of rap2 with the cytoskeleton was spontaneously restored after one cycle of actin depolymerization and repolymerization. Exogenous rap2, but not unrelated proteins, added to depolymerized actin and solubilized actin-binding proteins, was also specifically incorporated into the in vitro reconstituted cytoskeleton. The incorporation of exogenous rap2 was also observed when the cytoskeleton from resting or thrombin-activated platelets was subjected to actin depolymerization-repolymerization. Moreover, such interaction occurred equally well when exogenous rap2 was loaded with either GDP or GTPgammaS. We also found that polyhistidine-tagged rap2 immobilized on Ni(2+)-Sepharose and loaded with either GDP or GTPgammaS, could specifically bind to cytoskeletal actin. Moreover, when purified monomeric actin was induced to polymerize in vitro in the presence of rap2, the small G-protein specifically associated with the actin filaments. Finally, rap2 loaded with either GDP or GTPgammaS was able to bind to purified F-actin immobilized on a plastic surface. These results demonstrate that rap2 interacts with the platelet cytoskeleton by direct binding to the actin filaments and that this interaction is not regulated by the activation state of the protein.  相似文献   

8.
Based on the finding that vimentin isolated and purified from cultured mammalian cells is heavily contaminated by neutral lipids, the binding of a series of radioactively labeled nonpolar lipids to pure, delipidated vimentin was investigated. Employing gel permeation chromatography of the complexes on Sephacryl S-300, cholesterol, cholesteryl fatty acid esters and mono-, di- and triglycerides were found to efficiently associate with vimentin. These compounds also showed a strong tendency to bind to vimentin filaments. While the non-alpha-helical head piece of vimentin did not interact with neutral lipids under the above assay conditions, the alpha-helical rod domain was highly active. When cholesterol or 1,2-dioleoyl-glycerol was incorporated into phospholipid vesicles, the affinity of the liposomes for vimentin filaments was considerably increased. However, in sucrose density gradient equilibrium centrifugation the filament-vesicle adducts were only stable when the liposomes contained negatively charged phospholipids. These results suggest that the association of intermediate filaments with lipid vesicles is initiated by interaction of the arginine-rich N-termini of their subunit proteins with the negatively charged vesicle surface and stabilized by partial insertion of the protein molecules into the lipid bilayer, particularly at those sites where immiscible, nonpolar lipids create defects in phospholipid packing. Very likely, nonpolar lipids play a significant role in the interaction of intermediate filaments with natural membrane systems.  相似文献   

9.
Evidence for direct binding of vinculin to actin filaments   总被引:6,自引:0,他引:6  
K Ruhnau  A Wegner 《FEBS letters》1988,228(1):105-108
The interaction of vinculin with actin filaments was investigated by methods which exclude interference by contaminating proteins which may occur in vinculin preparations. Vinculin which was blotted from SDS-polyacrylamide gels onto nitrocellulose, was stained specifically by fluorescently labeled polymeric actin (100 mM KCl, 2 mM MgCl2). Vinculin which was purified from alpha-actinin and an actin polymerization-inhibiting protein (HA1), was found to be cosedimented with polymeric actin. Maximally one vinculin molecule was cosedimented per one hundred actin filament subunits. Half maximal binding of vinculin was observed at about 0.25 microM free vinculin. Vinculin could be replaced from actin by the addition of tropomyosin.  相似文献   

10.
Replicas of the apical surface of hair cells of the inner ear (vestibular organ) were examined after quick freezing and rotary shadowing. With this technique we illustrate two previously undescribed ways in which the actin filaments in the stereocilia and in the cuticular plate are attached to the plasma membrane. First, in each stereocilium there are threadlike connectors running from the actin filament bundle to the limiting membrane. Second, many of the actin filaments in the cuticular plate are connected to the apical cell membrane by tiny branched connecting units like a "crow's foot." Where these "feet" contact the membrane there is a small swelling. These branched "feet" extend mainly from the ends of the actin filaments but some connect the lateral surfaces of the actin filaments as well. Actin filaments in the cuticular plate are also connected to each other by finer filaments, 3 nm in thickness and 74 +/- 14 nm in length. Interestingly, these 3-nm filaments (which measure 4 nm in replicas) connect actin filaments not only of the same polarity but of opposite polarities as documented by examining replicas of the cuticular plate which had been decorated with subfragment 1 (S1) of myosin. At the apicolateral margins of the cell we find two populations of actin filaments, one just beneath the tight junction as a network, the other at the level of the zonula adherens as a ring. The latter which is quite substantial is composed of actin filaments that run parallel to each other; adjacent filaments often show opposite polarities, as evidenced by S1 decoration. The filaments making up this ring are connected together by the 3-nm connectors. Because of the polarity of the filaments this ring may be a "contractile" ring; the implications of this is discussed.  相似文献   

11.
Binding of vinculin to adhesion plaque proteins is restricted by an intramolecular association of vinculin's head and tail regions. Results of previous work suggest that polyphosphoinositides disrupt this interaction and thereby promote binding of vinculin to both talin and actin. However, data presented here show that phosphatidylinositol 4,5-bisphosphate (PI4,5P2) inhibits the interaction of purified tail domain with F-actin. Upon re-examining the effect of PI4,5P2 on the actin and talin-binding activities of intact vinculin, we find that when the experimental design controls for the effect of magnesium on aggregation of PI4,5P2 micelles, polyphosphoinositides promote interactions with the talin-binding domain, but block interactions of the actin-binding domain. In contrast, if vinculin is trapped in an open confirmation by a peptide specific for the talin-binding domain of vinculin, actin binding is allowed. These results demonstrate that activation of the actin-binding activity of vinculin requires steps other than or in addition to the binding of PI4,5P2.  相似文献   

12.
We have used low shear viscometry and electron microscopy to study the interaction between pure actin filaments and microtubules. Mixtures of microtubules having microtubule-associated proteins (MAPs) with actin filament have very high viscosities compared with the viscosities of the separate components. MAPs themselves also cause a large increase in the viscosity of actin filaments. In contrast, mixtures of actin filaments with tubulin polymers lacking MAPs have low viscosities, close to the sum of the viscosities of the separate components. Our interpretation of these observations is that there is an interaction between actin filaments and microtubules which requires MAPs. This interaction is inhibited by ATP and some related compounds. Electron micrographs of thin sections through mixtures of actin and microtubules show numerous close associations between the two polymers which may be responsible for their high viscosity.  相似文献   

13.
Previous studies have demonstrated that actin filament organization controls the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel function. The precise molecular nature of the interaction between actin and CFTR, however, remains largely unknown. In this report, interactions between actin and purified human epithelial CFTR were directly assessed by reconstitution of the channel protein in a lipid bilayer system and by atomic force microscopy (AFM). CFTR-containing liposomes in solution were deposited on freshly cleaved mica and imaging was performed in tapping-mode AFM. CFTR function was also determined in identical preparations. Images of single CFTR molecules were obtained, and addition of monomeric actin below its critical concentration showed the formation of actin filaments associated with CFTR. The data indicate a direct interaction between actin and CFTR exists, which may explain the regulatory role of the cytoskeleton in ion channel function. This was confirmed by functional studies of CFTR single-channel currents, which were regulated by addition of various conformations of actin. The present study indicates that CFTR may directly bind actin and that this interaction helps affect the functional properties of this channel protein.  相似文献   

14.
Severin, a 40,000-dalton protein from Dictyostelium that disassembles actin filaments in a Ca2+ -dependent manner, was purified 500-fold to greater than 99% homogeneity by modifications of the procedure reported by Brown, Yamamoto, and Spudich (1982. J. Cell Biol. 93:205-210). Severin has a Stokes radius of 29 A and consists of a single polypeptide chain. It contains a single methionyl and five cysteinyl residues. We studied the action of severin on actin filaments by electron microscopy, viscometry, sedimentation, nanosecond emission anisotropy, and fluorescence energy transfer spectroscopy. Nanosecond emission anisotropy of fluoresence-labeled severin shows that this protein changes its conformation on binding Ca2+. Actin filaments are rapidly fragmented on addition of severin and Ca2+, but severin does not interact with actin filaments in the absence of Ca2+. Fluorescence energy transfer measurements indicate that fragmentation of actin filaments by severin leads to a partial depolymerization (t1/2 approximately equal to 30 s). Depolymerization is followed by exchange of a limited number of subunits in the filament fragments with the disassembled actin pool (t1/2 approximately equal to 5 min). Disassembly and exchange are probably restricted to the ends of the filament fragments since only a few subunits in each fragment participate in the disassembly or exchange process. Steady state hydrolysis of ATP by actin in the presence of Ca2+-severin is maximal at an actin: severin molar ratio of approximately 10:1, which further supports the inference that subunit exchange is limited to the ends of actin filaments. The observation of sequential depolymerization and subunit exchange following the fragmentation of actin by severin suggests that severin may regulate site-specific disassembly and turnover of actin filament arrays in vivo.  相似文献   

15.
Purified actin and microtubule proteins polymerized together form a gel, while mixtures of actin with tubulin polymers lacking microtubule-associated proteins (MAPs) have low viscosities close to the sum of the viscosities of the constituents. Mixtures of actin and MAPs also have high viscosities. Our interpretation of these observations was that there is interaction of actin filaments and microtubules which is mediated by MAPs (Griffith, L. M., and Pollard, T. D. (1978) J. Cell Biol. 78, 958-965). We report here further evidence for this interaction. 1) Actin filaments and microtubules can form gels at physiological ionic strength providing the anion is glutamate rather than chloride. Both glutamate and chloride inhibit actin-MAPs interaction, but this is compensated for in glutamate where the microtubules are longer than in chloride. 2) The low shear viscosity of mixtures of isolated MAPs and actin filaments is enhanced by acidic pH and inhibited by high ionic strength. 3) MAPs can be fractionated to yield four different fractions with actin cross-linking activity: a subset of high molecular weight MAPs, purified "MAP-2" and two different fractions of tau polypeptides. 4) We have reconstituted a gel from actin, purified tubulin, and whole MAPs, but have not yet been successful with actin, purified tubulin, and any single purified MAP.  相似文献   

16.
James A. Wilkins  Shin Lin 《Cell》1982,28(1):83-90
Immunofluorescence and microinjection experiments have shown that vinculin (molecular weight 130,000) is localized at adhesion plaques of fibroblasts spread on a solid substrate. We found that this protein affects actin filament assembly and interactions in vitro at substoichiometric levels. Vinculin inhibits the rate of actin polymerization under conditions that limit nuclei formation, indicating an effect on the filament elongation step of the reaction. Vinculin also reduces actin filament-filament interaction measured with a low-shear viscometer. Scatchard plot analysis of the binding of 3H-labeled vinculin to actin filaments showed that there is one high-affinity binding site (dissociation constant = 20 nM) for every 1,500–2,000 actin monomers. These results suggest that vinculin interacts with a specific site located at the growing ends of actin filaments in a cytochalasin-like manner, a property consistent with its proposed function as a linkage protein between filaments and the plasma membrane.  相似文献   

17.
Spinophilin is a protein phosphatase 1 (PP1)- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We report that spinophilin is phosphorylated in vitro by protein kinase A (PKA). Phosphorylation of spinophilin was stimulated by treatment of neostriatal neurons with a dopamine D1 receptor agonist or with forskolin, consistent with spinophilin being a substrate for PKA in intact cells. Using tryptic phosphopeptide mapping, site-directed mutagenesis, and microsequencing analysis, we identified two major sites of phosphorylation, Ser-94 and Ser-177, that are located within the actin-binding domain of spinophilin. Phosphorylation of spinophilin by PKA modulated the association between spinophilin and the actin cytoskeleton. Following subcellular fractionation, unphosphorylated spinophilin was enriched in the postsynaptic density, whereas a pool of phosphorylated spinophilin was found in the cytosol. F-actin co-sedimentation and overlay analysis revealed that phosphorylation of spinophilin reduced the stoichiometry of the spinophilin-actin interaction. In contrast, the ability of spinophilin to bind to PP1 remained unchanged. Taken together, our studies suggest that phosphorylation of spinophilin by PKA modulates the anchoring of the spinophilin-PP1 complex within dendritic spines, thereby likely contributing to the efficacy and plasticity of synaptic transmission.  相似文献   

18.
Integrin-associated protein (IAP, CD47) is a plasma membrane receptor for thrombospondins and signal regulatory proteins (SIRPs) that has an essential role in host defense through its association with integrins. The IAP gene encodes alternatively spliced carboxyterminal cytoplasmic tails that have no previously described function. IAP cytoplasmic tails can bind two related proteins that mediate interaction between IAP and vimentin-containing intermediate filaments, named proteins linking IAP with cytoskeleton (PLICs). Integrins interact with PLICs indirectly, through IAP. Transfection of PLICs induces redistribution of vimentin and cell spreading in IAP-expressing cells. This novel connection between plasma membrane and cytoskeleton is likely to be significant in many adhesion-dependent cell functions.  相似文献   

19.
Caldesmon, calmodulin-, and actin-binding protein of chicken gizzard did not affect the process of polymerization of actin induced by 0.1 M KCl. Caldesmon binds to F-actin, thus inhibiting the gelation action of actin binding protein (ABP; filamin). Low shear viscosity and flow birefringence measurements revealed that in a system of calmodulin, caldesmon, ABP, and F-actin, gelation occurs in the presence of micromolar Ca2+ concentrations, but not in the absence of Ca2+. Electron microscopic observations showed the Ca2+-dependent formation of actin bundles in this system. These results were interpreted by the flip-flop mechanism: in the presence of Ca2+, a calmodulin-caldesmon complex is released from actin filaments on which ABP exerts its gelating action. On the other hand, in the absence of Ca2+, caldesmon remains bound to actin filaments, thus preventing the action of ABP.  相似文献   

20.
Platelet talin nucleates actin assembly as we show here directly by using rhodamine-phalloidin labelling of actin filaments. Nucleation by talin still occurs after reconstitution into liposomal bilayers. This is also demonstrated directly after protein-lipid double labelling and light microscopic imaging. Talin, thus, is the first actin binding protein for which anchoring and nucleation of actin filament growth at lipid interfaces have been visualized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号