首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Outer and inner envelope membranes of spinach chloroplasts wereisolated using floatation centrifugation followed by sedimentationsucrose density gradient centrifugation after disruption ofintact chloroplasts by freezing and thawing. Two major fractionswith buoyant densities of 1.11 and 1.08 g cm–3 and a minorfraction with a density of 1.15 g cm–3 were obtained.They were identified as innei and outer envelope and thylakoidfractions, respectively, by analyzing their polypeptide compositionby high-resolution SDS-PAGE and the N-terminal sequences oftheir protein components. Due to the refinement of the isolation procedure, most of theribulose-l,5-bisphosphate carboxylase/oxygenasc (RuBisCO), whichhad always been observed as a contaminant, was eliminated fromthe outer envelope fraction. Application of high-resolutionSDS-PAGE revealed that this fraction was rich in the low-molecular-massouter envelope protein, E6.7 [Salomon et at. (1990) Proc. Natl.Acad. Sci. USA 87: 5778] and a protein with a molecular massof 15 kDa which is homologous to the 16 kDa outer envelope proteinof pea [Pohlmeyer et al. (1997) Proc. Natl. Acad. Sci. USA 94:9504]. The two proteins account for 90% of the total proteinspresent in outer envelope membranes. Proteins which are suggestedto function in translocation of nuclear-encoded polypeptideswere not identified in the envelopes from spinach in the presentstudy. Differences in the protein composition of outer envelopemembranes arc discussed based on the developemental stages ofchloroplasts. 1Present address: Biological Function Section, Kansai AdvancedResearch Center, Communications Research Laboratory, Ministryof Posts and Telecommunications, Kobe, Hyogo, 651-24 Japan.  相似文献   

3.
4.
5.
Treatment of chick embryo fibroblasts infected with Sindbis virus with TPCK, the choloromethyl ketone derivative of tosyl-phenylalanine and an inhibitor of chymotrypsin, resulted in reduced synthesis of viral structural proteins and the accumulation of a high-molecular-weight polypeptide, thought to be a precursor. The analogous inhibitor of trypsin, TLCK, the chloromethyl ketone derivative of tosyllysine, had no such effect.  相似文献   

6.
7.
Hepatitis B virus immune escape mutants have been associated with vaccine failure and reinfection of grafted liver despite immune prophylaxis, but their biological properties remain largely unknown. Transfection of 20 such mutants in a human hepatoma cell line identified many with severe impairment in virion secretion, which can be rescued to various extents by coexpression of wild-type envelope proteins or introduction of a novel glycosylation site. Consistent with their role in maintaining intra- or intermolecular disulfide bonds, cysteine residues within the “a” determinant are critical for virion secretion.  相似文献   

8.
Antibody capacity to recognize infectious virus is a prerequisite of many antiviral functions. We determined the infectious virion capture index (IVCI) of different antibody specificities. Whereas broadly neutralizing antibodies (bNAbs), except for an MPER bNAb, selectively captured infectious virions, non-bNAbs and mucosal human immunodeficiency virus type 1 (HIV-1)-positive IgG captured subsets of both infectious and noninfectious virions. Infectious virion capture was additive with a mixture of antibodies, providing proof of concept for vaccine-induced antibodies that together have improved capacity to recognize infectious virions.  相似文献   

9.
Phosphorylation of Animal Virus Proteins by a Virion Protein Kinase   总被引:1,自引:11,他引:1       下载免费PDF全文
Compared with several other enveloped viruses, purified virions of frog virus 3 contained a relatively high activity of a protein kinase which catalyzed the phosphorylation of endogenous polypeptides or added substrate proteins. Virions also contained a phosphoprotein phosphatase activity which released phosphate covalently linked to proteins. It was possible to select reaction conditions where turnover of protein phosphoesters was minimal, as the phosphatase required Mn(2+) ions for activity whereas the protein kinase was active in the presence of Mg(2+) ions. Electrophoretic studies in polyacrylamide gels containing sodium dodecyl sulfate indicated that at least 10 of the virion polypeptides were phosphorylated in the in vitro protein kinase reaction. Characterization of these phosphoproteins demonstrated that the phosphate was incorporated predominantly in a phosphoester linkage with serine residues. The protein kinase was solubilized by disrupting purified virions with a nonionic detergent in a high-ionic-strength buffer and was separated from many of the virion substrate proteins by zonal centrifugation in glycerol gradients. The partially purified protein kinase would phosphorylate polypeptides of many different animal viruses, and maximal activity was not dependent on added cyclic nucleotides. These properties distinguished the virion protein kinase from a well characterized cyclic AMP-dependent protein kinase which phosphorylated viral proteins only to a small extent.  相似文献   

10.
11.
Inhibition of HeLa Cell Protein Synthesis by the Vaccinia Virion   总被引:42,自引:30,他引:12       下载免费PDF全文
  相似文献   

12.
Chloroplast envelopes were isolated from chloroplasts purifiedfrom Spinacea oleracea L. (C3), Panicum miliaceum L. (NAD-malicenzyme-type C1), Digitaria sanguinalis (L.) Scop. (NADP-malicenzyme-type C4), Kalanchoe daigremontiana Hamet et Perrier (constitutiveCAM), and from Mesembryanthemum crystallinum L. (inducible CAM)performing either C3 photosynthesis or Crassulacean acid metabolism(CAM). For each species, methods were developed to isolate chloroplastenvelopes free of thylakoid contamination. The polypeptidesof ribulose bisphosphate (RuBP) carboxylase which has been consistentlyreported in envelope preparations of spinach were not foundin envelope preparations of C4 mesophyll chloroplasts. Silverstaining of envelope polypeptides resolved electrophoreticallyon sodium dodecylsulfate polyacrylamide gradient slab gels produceda more complex profile than did Coomassie staining which haspreviously been used with C3 envelope preparations, even thoughsilver reacted poorly with polypeptides corresponding to thesubunits of RuBP carboxylase. All of the plants examined possesseda major polypeptide of 27 to 29 kilodaltons (kD) which was previouslysuggested to be the phosphate translocator in spinach. WithC3 M. crystallinum, the 29 kD polypeptide stained most intensely.After induction of CAM, a 32 kD polypeptide also stained intensely,giving a profile similar to that obtained with the constitutiveCAM species. A 32 kD polypeptide was also prominent in C4 envelopepreparations, suggesting that a 32 kD polypeptide may be a translocatorprotein which is required in Crassulacean acid metabolism andC4 photosynthesis, but not in C3 photosynthesis. (Received April 25, 1983; Accepted July 9, 1983)  相似文献   

13.
Redirecting the tropism of viral vectors enables specific transduction of selected cells by direct administration of vectors. We previously developed targeting lentiviral vectors by pseudotyping with modified Sindbis virus envelope proteins. These modified Sindbis virus envelope proteins have mutations in their original receptor-binding regions to eliminate their natural tropisms, and they are conjugated with targeting proteins, including antibodies and peptides, to confer their tropisms on target cells. We investigated whether our targeting vectors interact with DC-SIGN, which traps many types of viruses and gene therapy vectors by binding to the N-glycans of their envelope proteins. We found that these vectors do not interact with DC-SIGN. When these vectors were produced in the presence of deoxymannojirimycin, which alters the structures of N-glycans from complex to high mannose, these vectors used DC-SIGN as their receptor. Genetic analysis demonstrated that the N-glycans at E2 amino acid (aa) 196 and E1 aa 139 mediate binding to DC-SIGN, which supports the results of a previous report of cryoelectron microscopy analysis. In addition, we investigated whether modification of the N-glycan structures could activate serum complement activity, possibly by the lectin pathway of complement activation. DC-SIGN-targeted transduction occurs in the presence of human serum complement, demonstrating that high-mannose structure N-glycans of the envelope proteins do not activate human serum complement. These results indicate that the strategy of redirecting viral vectors according to alterations of their N-glycan structures would enable the vectors to target specific cells types expressing particular types of lectins.The ultimate goal of gene therapy is cell- and tissue-specific targeted delivery of therapeutic genes. A targeted system increases the therapeutic effects of transgenes at the site of action while reducing adverse effects in surrounding cells and tissues that commonly occur through nonspecific modes of gene delivery (5-8). Gene therapy vectors that can home to specific cells and tissues after intravenous administration, also known as targeting vectors, are ideal for targeted delivery (62). In the past, many attempts have been made to develop targeting viral vectors by using adenovirus, adeno-associated virus, oncoretrovirus, lentivirus, measles virus, and alphavirus (70, 89).To create targeting viral vectors, the natural tropisms of the viruses must first be eliminated and new binding specificities conferred (89). The binding of envelope viruses, such as oncoretrovirus, lentivirus, measles virus, and alphavirus, is mediated by envelope proteins. To redirect the tropisms of these viruses, the original receptor-binding regions of their envelope proteins must be eliminated. We have developed targeting oncoretroviral and lentiviral vectors by pseudotyping them with modified Sindbis virus envelope proteins and by mutating the receptor-binding regions of the envelope proteins, thereby reducing the nonspecific transduction of untargeted cells (61, 63-66). The mutated regions of the envelope protein originally interact directly with other receptors, including heparan sulfate, laminin receptor, and/or unknown molecules (10, 46, 67, 90). These mutations reduced the nonspecific transduction of the liver and spleen when the vectors were administered intravenously (66). By conjugating the virus with targeting ligands, including antibodies and peptides, the virus can transduce specific cells and tissues both in vitro and in vivo (53, 61, 63-66, 71, 72). These results demonstrated that we can eliminate the natural tropism of the Sindbis virus envelope protein while maintaining its fusion activity.However, the N-glycans of the envelope proteins are still intact and possibly interact with cell surface lectins. DC-SIGN is the best-known cell surface lectin expressed on dendritic cells, certain macrophages, and activated B cells (27, 29, 30).Structural and biochemical studies show flexible modes of DC-SIGN binding to cognate saccharides. The trimannose core unit of high-mannose N-glycans is the primary binding site for DC-SIGN (23), while nonreducing alpha1-2-linked terminal mannose moieties contribute to the high avidity seen when DC-SIGN binds the Man8 or Man9 structures common to many viral envelope glycoproteins (22). DC-SIGN traps a wide variety of viruses and viral vectors (HIV [29, 30], simian immunodeficiency virus [50], human T-cell leukemia virus type 1 [12], measles virus [17, 18], dengue virus [86], feline corona virus [77], herpes simplex virus type 1 [16], human cytomegalovirus [36], human herpesvirus type 8 [76], Ebola virus [1], West Nile virus [15], influenza virus [91], Marburg virus [57], and severe acute respiratory syndrome virus [93]) by binding to the N-glycans of the viruses and viral vectors. Binding of DC-SIGN with virus and viral vectors results in enhanced infection and/or transduction of DC-SIGN-positive cells (cis infection/transduction) and/or neighboring cells (trans infection/transduction).If any targeting vector can be trapped by DC-SIGN, it is necessary to eliminate its binding to DC-SIGN to increase the targeting specificity of the virus in vivo (28, 49, 73). In addition to enhanced infection/transduction, binding to DC-SIGN causes signaling that can activate DC-SIGN-expressing antigen-presenting cells (32, 38). Activation of antigen-presenting cells can lead to adverse effects, including systemic inflammation and immune reactions to viral vectors and their transgene products (7, 8, 32, 59, 88). Therefore, investigation of the interactions between viral vectors and DC-SIGN, identification of N-glycans that mediate binding to DC-SIGN, and elimination of interactions with DC-SIGN are important aspects of reducing adverse effects of vector administration and prolonging transgene expression.The envelope protein of our targeting lentiviral vectors, the Sindbis virus envelope protein, contains four N-linked glycans (9, 48). Sindbis virus can replicate in insect and mammalian cells, which have different types of enzymes to process N-glycans (3). Therefore, the structures of N-glycans differ between the virus produced in insect cells and that produced in mammalian cells (40, 58). The N-glycans of the virus produced in insect cells have either the high-mannose or the paucimannosidic structure. Paucimannosidic structure N-glycans, as well as high-mannose structure N-glycans, have terminal mannose residues, and all N-glycans produced in insect cells are predicted to be able to bind DC-SIGN (Fig. (Fig.11 a) (39, 47). On the other hand, two N-glycans of the virus produced in mammalian cells have the high-mannose structure, while two others have the complex structure (40, 58). The two complex structure N-glycans have been shown to be exposed on the surface of the envelope protein, while the two high-mannose structure N-glycans are buried within the center of the trimer of the envelope proteins (74, 94). Therefore, the virus produced in insect cells can access DC-SIGN as its receptor while the virus produced in mammalian cells cannot (47). Because our targeting vectors are produced in mammalian cells, they should not bind DC-SIGN efficiently. However, one group demonstrated that lentiviral vectors pseudotyped with a modified Sindbis virus envelope protein bind to DC-SIGN and target DC-SIGN-positive cells (92), in contrast to the results seen with replication-competent Sindbis virus. Both Sindbis virus and the pseudotyped lentiviral vectors were produced in mammalian cells; Sindbis virus was produced in baby hamster kidney (BHK) cells, chicken embryonic fibroblasts, and hamster fibroblast cells; and the pseudotyped vector was produced in human embryonic kidney fibroblast (293T) cells (69). Because it is known that the N-glycans of the HIV envelope protein produced in lymphocytes have structures different from those produced in macrophages, the different producer cells may account for the differences between the N-glycan structures of the virus and Sindbis virus envelope-pseudotyped lentivectors (54, 55). It is also known that the N-glycan structure of dengue virus can be altered by the presence of viral capsid (35). Thus, the capsid of Sindbis virus and HIV could also affect the structures of the N-glycans of envelope proteins differently.Open in a separate windowFIG. 1.(a) N-glycan structures and processing pathway. All N-glycans are first produced as the high-mannose structure in both mammalian cells and insect cells. In mammalian cells, certain N-glycans are further processed to the complex structure. In insect cells, certain N-glycans are further processed to the paucimannosidic structure. DMNJ inhibits mannosidase I, which is necessary for the formation of the complex structure; thus, all N-glycans have the high-mannose structure when generated in the presence of DMNJ. One representative structure of each N-glycan is shown. Man, mannose; GlcNAc, N-acetylglucosamine; SA, sialic acid; Gal, galactose. (b) Schematic representation of chimeric Sindbis virus envelope proteins. The Sindbis virus envelope protein is first synthesized as a polypeptide and subsequently cleaved by cellular proteases to generate the E3, E2, 6K, and E1 proteins. E1 and E2 are incorporated into the viral envelope, and E3 and 6K are leader sequences for E2 and E1, respectively. The N-linked glycosylation sites of the envelope proteins are shown. 2.2 is a modified Sindbis virus envelope protein in which the IgG-binding domain of protein A (ZZ) was inserted into the E2 region at aa 70. 2.2 1L1L has two flexible linkers (Gly-Gly-Gly-Gly-Ser) at aa 70 of the E2 protein. 2.2 ΔE2-196N does not have the N-glycan at E2 aa 196, 2.2 ΔE1-139N does not have the N-glycan at E1 aa 139, and 2.2 ΔE2-196N E1-139N does not have the N-glycans at either E2 aa 196 or E1 aa 139.In this study, we investigated whether our targeting vector binds DC-SIGN. We found that DC-SIGN does not mediate the transduction of our targeting vectors efficiently. The vectors can be redirected to DC-SIGN by modifying the structures of the N-glycans of the envelope proteins by using the mannosidase I inhibitor deoxymannojirimycin (DMNJ) (25, 47, 51).  相似文献   

14.
15.
16.
G Borkow  M Ovadia 《Life sciences》1992,51(16):1261-1267
Viperid, elapid and crotalid snake venoms were screened in vitro for antiviral activity against Sendai virus. The hemolysis of 10(8) human erythrocytes in 1 ml, caused by 70 HAU of Sendai virus, was abolished when the virions were pretreated with 10 ug of the viperid venom of Echis coloratus, and was considerably diminished when pretreated with 10 ug of the venom of Echis carinatus sochureki, the cobra venoms of Naja atra and Naja nigricollis nigricollis. These venoms did not affect the erythrocytes but inhibited the virions themselves irreversibly. All other examined snake venoms had low or no antiviral activity. There was no correlation between the proteolytic and the antiviral activity of the venoms.  相似文献   

17.
18.
《Biophysical journal》2020,118(10):2385-2399
The nuclear envelope (NE) consists of two concentric nuclear membranes separated by the lumen, an ∼40-nm-wide fluid layer. NE proteins are implicated in important cellular processes ranging from gene expression to nuclear positioning. Although recent progress has been achieved in quantifying the assembly states of NE proteins in their native environment with fluorescence fluctuation spectroscopy, these studies raised questions regarding the association of NE proteins with nuclear membranes during the assembly process. Monitoring the interaction of proteins with membranes is important because the binding event is often associated with conformational changes that are critical to cellular signaling pathways. Unfortunately, the close physical proximity of both membranes poses a severe experimental challenge in distinguishing luminal and membrane-associated NE proteins. This study seeks to address this problem by introducing new, to our knowledge, fluorescence-based assays that overcome the restrictions imposed by the NE environment. We found that luminal proteins violate the Stokes-Einstein relation, which eliminates a straightforward use of protein mobility as a marker of membrane association within the NE. However, a surprising anomaly in the temperature-dependent mobility of luminal proteins was observed, which was developed into an assay for distinguishing between soluble and membrane-bound NE proteins. We further introduced a second independent tool for distinguishing both protein populations by harnessing the previously reported undulations of the nuclear membranes. These membrane undulations introduce local volume changes that produce an additional fluorescence fluctuation signal for luminal, but not for membrane-bound, proteins. After testing both methods using simple model systems, we apply the two assays to investigate a previously proposed model of membrane association for the luminal domain of SUN2, a constituent protein of the linker of nucleoskeleton and cytoskeleton complex. Finally, we investigate the effect of C- and N-terminal tagging of the luminal ATPase torsinA on its ability to associate with nuclear membranes.  相似文献   

19.
20.
To study the role of Src family tyrosine kinases in infection with human immunodeficiency virus type 1 (HIV-1), we constructed an Hck mutant, HckN, that hinders signaling from wild-type Hck. HIV-1 produced in HckN-expressing cells was significantly less infectious to HeLa–CD4–LTR–β-gal (MAGI) cells than HIV-1 produced in mock-transfected cells. The inhibitory effect of HckN was compensated for by the expression of vesicular stomatitis virus G protein. Finally, we found that the HIV-1 produced in the HckN-expressing cells entered into the cells less efficiently than did the control HIV-1. These results suggest that the Src family tyrosine kinases regulate entry of HIV-1 into target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号