首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Moraxella catarrhalis isolates express lipooligosaccharide (LOS) molecules on their surface, which share epitopes similar to that of the Neisseria and Haemophilus species. These common LOS epitopes have been implicated in various steps of pathogenesis for the different organisms. In this study, a cluster of three LOS glycosyltransferase genes (lgt) were identified in M. catarrhalis 7169, a strain that produces a serotype B LOS. Mutants in these glycosyltransferase genes were constructed, and the resulting LOS phenotypes were consistent with varying degrees of truncation compared to wild-type LOS. The LOS structures of each lgt mutant were no longer detected by a monoclonal antibody (MAb 4G5) specific to a highly conserved terminal epitope nor by a monoclonal antibody (MAb 3F7) specific to the serotype B LOS side chain. Mass spectrometry of the LOS glycoforms assembled by two of these lgt mutants indicated that lgt1 encodes an alpha(1-2) glucosyltransferase and the lgt2 encodes a beta(1-4) galactosyltransferase. However, these structural studies could not delineate the function for lgt3. Therefore, M. catarrhalis lgt3 was introduced into a defined beta(1-4) glucosyltransferase Haemophilus ducreyi 35000glu- mutant in trans, and monoclonal antibody analysis confirmed that Lgt3 complemented the LOS defect. These data suggest that lgt3 encodes a glucosyltransferase involved in the addition of a beta(1-4)-linked glucose to the inner core. Furthermore, we conclude that this enzymatic step is essential for the assembly of the complete LOS glycoform expressed by M. catarrhalis 7169.  相似文献   

2.
We investigated the conservation and antibody accessibility of inner core epitopes of Moraxella catarrhalis lipopolysaccharide (LPS) in order to assess their potential as vaccine candidates. Two LPS mutants, a single mutant designated lgt2 and a double mutant termed lgt2/lgt4, elaborating truncated inner core structures were generated in order to preclude expression of host-like outer core structures and to create an inner core structure that was shared by all three serotypes A, B and C of M. catarrhalis. Murine monoclonal antibodies (mAbs), designated MC2-1 and MC2-10 were obtained by immunising mice with the lgt2 mutant of M. catarrhalis serotype A strain. We showed that mAb MC2-1 can bind to the core LPS of wild-type (wt) serotype A, B and C organisms and concluded that mAb MC2-1 defines an immunogenic inner core epitope of M. catarrhalis LPS. We were unsuccessful in obtaining mAbs to the lgt2/lgt4 mutant. MAb MC2-10 only recognised the lgt2 mutant and the wt serotype A strain, and exhibited a strong requirement for the terminal N-acetyl-glucosamine residue of the lgt2 mutant core oligosaccharide, suggesting that this residue was immunodominant. Subsequently, we showed that both mAbs MC2-1 and MC2-10 could facilitate bactericidal killing of the lgt2 mutant, however neither mAb could facilitate bactericidal killing of the wt serotype A strain. We then confirmed and extended the candidacy of the inner core LPS by demonstrating that it is possible to elicit functional antibodies against M. catarrhalis wt strains following immunisation of rabbits with glycoconjugates elaborating the conserved inner core LPS antigen. The present study describes three conjugation strategies that either uses amidases produced by Dictyostelium discoideum, targeting the amino functionality created by the amidase activity as the attachment point on the LPS molecule, or a strong base treatment to remove all fatty acids from the LPS, thus creating amino functionalities in the lipid A region to conjugate via maleimide-thiol linker strategies targeting the carboxyl residues of the carrier protein and the free amino functionalities of the derived lipid A region of the carbohydrate resulted in a high loading of carbohydrates per carrier protein from these carbohydrate preparations. Immunisation derived antisera from rabbits recognised fully extended M. catarrhalis LPS and whole cells. Moreover, bactericidal activity was demonstrated to both the immunising carbohydrate antigen and importantly to wt cells, thus further supporting the consideration of inner core LPS as a potential vaccine antigen to combat disease caused by M. catarrhalis.  相似文献   

3.
Moraxella catarrhalis express three predominant forms of lipooligosaccharide (LOS) molecules on the bacterial surface. These major glycolipids contain specific carbohydrate epitopes that distinguish each glycoform into serotype A, B, or C LOS. All three serotypes, however, share a common glucose containing inner-core structure, consisting of an alpha-glucose attached to 2-keto-3-deoxyoctulosonic acid (KDO), which is unique among Gram-negative bacteria. Many of the LOS glycosyltransferase genes (lgt) responsible for assembly of the extended M. catarrhalis LOS structure have been identified. In this report, we now describe the identification and characterization of Lgt6, a unique glycosyltransferase that is responsible for the addition of the first glucose to the inner core thus initiating the assembly of full length LOS. Isogenic mutants defective in the expression of lgt6 were constructed in all three M. catarrhalis LOS serotypes and the resulting LOS glycoforms consisted of KDO(2)-lipid A-OH as analyzed by urea sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. In addition, the expression of lgt6 in trans in a heptose-deficient Neisseria meningitidis NMB gmhX mutant resulted in the addition of a hexose to the LOS of this strain. These studies demonstrate that Lgt6 functions as an alpha-(1-5)-glucosyltransferase in M. catarrhalis adding the primary glucose to the KDO(2)-lipid A-OH in LOS biosynthesis. The function of Lgt6 is required for the completion of both the major and minor oligosaccharide chains in M. catarrhalis.  相似文献   

4.
The glycosyltransferase enzymes (Lgts) responsible for the biosynthesis of the lipooligosaccharide-derived oligosaccharide structures from Moraxella catarrhalis have been investigated. This upper respiratory tract pathogen is responsible for a spectrum of illnesses, including otitis media (middle ear infection) in children, and contributes to exacerbations of chronic obstructive pulmonary disease in elderly patients. To investigate the function of the glycosyltransferase enzymes involved in the biosynthesis of lipooligosaccharide of M. catarrhalis and to gain some insight into the mechanism of serotype specificity for this microorganism, mutant strains of M. catarrhalis were produced. Examination by NMR and MS of the oligosaccharide structures produced by double-mutant strains (2951lgt1/4Delta and 2951lgt5/4Delta) and a single-mutant strain (2951lgt2Delta) of the bacterium has allowed us to propose a model for the serotype-specific expression of lipooligosaccharide in M. catarrhalis. According to this model, the presence/absence of Lgt4 and the Lgt2 allele determines the lipooligosaccharide structure produced by a strain. Furthermore, it is concluded that Lgt4 functions as an N-acetylglucosylamine transferase responsible for the addition of an alpha-D-GlcNAc (1-->2) glycosidic linkage to the (1-->4) branch, and also that there is competition between the glycosyltransferases Lgt1 and Lgt4. That is, in the presence of an active Lgt4, GlcNAc is preferentially added to the (1-->4) chain of the growing oligosaccharide, instead of Glc. In serotype B strains, which lack Lgt4, Lgt1 adds a Glc at this position. This implies that active Lgt4 has a much higher affinity/specificity for the beta-(1-->4)-linked Glc on the (1-->4) branch than does Lgt1.  相似文献   

5.
The lipooligosaccharide (LOS) of Moraxella catarrhalis is unusual in that it lacks heptose. The sugar linking oligosaccharide to Lipid A is a trisubstituted glucose. A single enzyme, Lgt3, is suggested to trisubstitute this core sugar. The lgt3 gene encodes two distinct domains with high similarity to glucosyltransferases of the GT-A superfamily, thus encoding a bidomain, multifunctional glucosyltransferase. To characterise Lgt3, the gene was amplified from M. catarrhalis, expressed in Escherichia coli, and purified. Analysis of its glycosyltransferase catalytic activity ascertained the pH and temperature optima for Lgt3. The donor specificity and acceptor specificity were examined. This study confirms that Lgt3 is a glucosyltransferase which catalyses addition of glucose to its cognate receptor, a terminal glucose presented as the core region of LOS.  相似文献   

6.
7.
Neisseria meningitidis strains A1 and M978 both express the lipooligosaccharide (LOS) L8 immunotype [Gu et al., J. Clin. Microbiol. 30 (1992) 2047-2053]. Under different growth conditions, strain A1 did not change its LOS profile whereas strain M978 produced variable LOS profiles on SDS-PAGE. To understand the genetic basis of LOS conservation and variation, their lgt locus encoding glycosyltransferases responsible for the biosynthesis of the alpha-chain of LOS was analyzed. Strain A1 possessed only two genes, lgtA and lgtH, at the lgt locus. The lgtA gene was inactivated due to a frameshift mutation; thus strain A1 expressed only L8 LOS. In contrast, strain M978 contained five genes lgtZ, lgtC, lgtA, lgtB and lgtE at this locus, thus it had a potential to express L1, L3,7 in addition to the L8 LOS. The data showed that strain A1 is a better reference strain for the L8 immunotype because of the stability of L8 LOS expression resulting from its unique lgt locus. In addition, these two strains had two new genetic organizations, lgtAH and lgtZCABE, compared to the reported gene organization at the lgt locus in N. meningitidis.  相似文献   

8.
Invasion of non-professional phagocytes is a strategy employed by several mucosal pathogens, but has not been investigated in detail for Moraxella catarrhalis, a major cause of human respiratory tract infections. We investigated the role of outer membrane protein (OMP) UspA1 and lipooligosaccharide (LOS) in M. catarrhalis invasion into epithelial cells. An isogenic mutant of strain O35E, which lacked expression of the UspA1 adhesin, demonstrated not only severely impaired adherence (86%) to but also reduced invasion (77%) into Chang conjunctival cells in comparison with the wild-type strain. The isogenic, LOS-deficient mutant strain O35E.lpxA was attenuated in adherence (93%) and its capacity to invade was severely reduced (95%), but not abolished. Inhibition assays using sucrose and cytochalasin D, respectively, demonstrated that clathrin and actin polymerization contribute to internalization of M. catarrhalis by Chang cells. Furthermore, inhibition of UspA1-mediated binding to cell-associated fibronectin and alpha5beta1 integrin decreased invasion of M. catarrhalis strain O35E (72% and 41%, respectively). These data indicate that OMP UspA1 and LOS profoundly affect the capacity of M. catarrhalis to invade epithelial cells.  相似文献   

9.
We describe a prospective study of molecular analysis of Moraxella catarrhalis isolated from a community hospital. Our study was designed to investigate the possible relationship of pulsed-field gel electrophoresis (PFGE) patterns of M. catarrhalis between hospital- and community-acquired respiratory infections. A nosocomial outbreak of M. catarrhalis was observed between September 2000 and September 2001. During the study period, 40 strains of M. catarrhalis were isolated from a total of 32 patients with respiratory infections (26 strains from 18 inpatients, and 14 strains from 14 outpatients). We compared the PFGE patterns in 40 strains of M. catarrhalis isolated from the respiratory tract of the study patients. The genomic types of M. catarrhalis were classified into three PFGE patterns (A, B, and C). Interestingly, the nosocomial outbreak of M. catarrhalis included two patterns (A and B). Of the three patterns, two patterns (A and B) were found in both inpatients and outpatients. More interestingly, two subtypes of pattern B (B1 and B4) were simultaneously found in both inpatients and outpatients. Our results indicated that PFGE with SmaI chromosomal digestion is a suitable technique to establish the inter-strain genetic relatedness of M. catarrhalis, and suggested that the outbreak of M. catarrhalis occasionally included miscellaneous PFGE patterns. The results also showed that PFGE patterns of M. catarrhalis isolates were similar between hospital- and community-acquired respiratory infections. Analysis of the subtypes suggested that there might be some association between hospital- and community-acquired respiratory infections caused by M. catarrhalis.  相似文献   

10.
Moraxella catarrhalis is a Gram-negative aerobic diplococcus that is a mucosal pathogen of the upper and lower respiratory tracts in humans. In order to colonize the human host and establish an infection, M. catarrhalis must be able to effectively attach to the respiratory mucosal epithelia. Although little is known about M. catarrhalis pathogenesis, our laboratory has previously shown that expression of type IV pili (TFP) contributes to mucosal colonization. TFP are filamentous surface appendages primarily composed of a single protein subunit termed pilin, which is encoded by pilA in M. catarrhalis. These surface structures play a crucial role in the initiation of disease by a wide range of pathogenic bacteria. Our studies also indicate that unlike the pilin of the pathogenic Neisseria species, which exhibit both phase and antigenic variation, the pilin subunit of M. catarrhalis appears to be more highly conserved as there are no major pilin variants produced by a single strain and only two major PilA antigenic variants, termed clade 1 and clade 2, have been observed between strains. Moreover, we have determined that these highly conserved bacterial surface structures are expressed by all M. catarrhalis clinical isolates evaluated. Therapeutic or vaccine-based interventions that prevent or diminish nasopharyngeal colonization will likely decrease acute and recurrent M. catarrhalis infections in prone populations. Thus, our data indicate that additional studies aimed at elucidating the role of PilA in the pathogenesis and host response to M. catarrhalis infections are warranted.  相似文献   

11.
Otitis media (OM) is a polymicrobial disease wherein prior or concurrent infection with an upper respiratory tract virus plays an essential role, predisposing the middle ear to bacterial invasion. In episodes of acute bacterial OM, respiratory syncytial virus (RSV) is the most commonly isolated virus and thus serves as an important co-pathogen. Of the predominant bacterial agents of OM, the pathogenesis of disease due to Moraxella catarrhalis is the least well understood. Rigorous study of M. catarrhalis in the context of OM has been significantly hindered by lack of an animal model. To bridge this gap, we assessed whether co-infection of chinchillas with M. catarrhalis and RSV would facilitate ascension of M. catarrhalis from the nasopharynx into the middle ear. Chinchillas were challenged intranasally with M. catarrhalis followed 48 hours later by intranasal challenge with RSV. Within 7 days, 100% of nasopharynges were colonized with M. catarrhalis and homogenates of middle ear mucosa were also culture-positive. Moreover, within the middle ear space, the mucosa exhibited hemorrhagic foci, and a small volume of serosanguinous effusion was present in one of six ears. To improve upon this model, and based on epidemiologic data, nontypeable Haemophilus influenzae (NTHI) was included as an additional bacterial co-pathogen via intranasal administration four days before M. catarrhalis challenge. With this latter protocol, M. catarrhalis was cultured from the nasopharynx and middle ear homogenates of a maximum of 88% and 79% animals, respectively, for up to 17 days after intranasal challenge with M. catarrhalis. Additionally, hemorrhagic foci were observed in 79% of middle ears upon sacrifice. Thus, these data demonstrated that co-infection with RSV and NTHI predisposed to M. catarrhalis-induced ascending experimental OM. This model can be used both in studies of pathogenesis as well as to investigate strategies to prevent or treat OM due to M. catarrhalis.  相似文献   

12.
Preprolipopoprotein diacylglyceryl transferase (Lgt) is the gating enzyme of lipoprotein biosynthesis, and it attaches a lipid structure to the N-terminal part of preprolipoproteins. Using Lgt from Escherichia coli in a BLASTp search, we identified the corresponding Lgt homologue in Mycobacterium tuberculosis and two homologous (MSMEG_3222 and MSMEG_5408) Lgt in Mycobacterium smegmatis. M. tuberculosis lgt was shown to be essential, but an M. smegmatis ΔMSMEG_3222 mutant could be generated. Using Triton X-114 phase separation and [(14)C]palmitic acid incorporation, we demonstrate that MSMEG_3222 is the major Lgt in M. smegmatis. Recombinant M. tuberculosis lipoproteins Mpt83 and LppX are shown to be localized in the cell envelope of parental M. smegmatis but were absent from the cell membrane and cell wall in the M. smegmatis ΔMSMEG_3222 strain. In a proteomic study, 106 proteins were identified and quantified in the secretome of wild-type M. smegmatis, including 20 lipoproteins. All lipoproteins were secreted at higher levels in the ΔMSMEG_3222 mutant. We identify the major Lgt in M. smegmatis, show that lipoproteins lacking the lipid anchor are secreted into the culture filtrate, and demonstrate that M. tuberculosis lgt is essential and thus a validated drug target.  相似文献   

13.
The haemagglutination and tissue culture adherence properties of 20 isolates of Moraxella catarrhalis obtained from the sputum of elderly patients with lower respiratory tract infections were compared with those of 20 isolates of M. catarrhalis obtained from the nasopharynx of elderly persons colonised by the organism. Eighty percent of isolates from the infected group as opposed to 5% of isolates from the colonised group haemagglutinated human erythrocytes (P < 0.001), indicating that the haemagglutinin might be a marker of pathogenicity for M. catarrhalis. There was a significant difference in the adherence to HEp-2 cells of isolates from the infected group in comparison to isolates from the colonised group (P = 0.03). Haemagglutination and tissue culture adherence properties were unrelated, indicating that separate adhesin systems are involved. The adherence of M. catarrhalis to HEp-2 cells was unaffected following pronase and trypsin treatment, however, sodium periodate pre-treatment of the bacteria significantly reduced the tissue culture adherence index, indicating that the adhesin by which the bacteria bind to HEp-2 cells may have a carbohydrate moiety. Transmission electron microscopy studies revealed that adherence of M. catarrhalis to HEp-2 cells was mediated by trypsin-resistant 'tack-/spicule-like' structures protruding from the surface of the bacteria.  相似文献   

14.
15.
Abstract Moraxella catarrhalis is one of the major pathogens of respiratory infections and has the ability to attach to the pharyngeal cells via fimbriae. We characterized the epithelial cell receptor to which fimbriate M. catarrhalis binds. Neuraminidase pretreatment of pharyngeal epithelial cells resulted in a significant decrease of M. catarrhalis attachment, suggesting interaction with the sialic acid component. The attachment was not decreased in M. catarrhalis pretreated with 2 and 1 mg/ml of fucose, N -acetyl-neuraminic acid, N -acetyl-glucosamine, N -acetyl-galactosamine, acetyl-salicylic acid and colominic acid. However, M. catarrhalis treated with gangliosides M1, M2, D1a, D1b and T1a at a concentration of 2.5 μg/ml had significantly decreased the attachment compared to the control. In contrast treatment with gangliosides M3 and asialoganglioside M1 did not decrease the attachment of M. catarrhalis and thereby provided evidence for specificity of the inhibition. Concentration dependent effects of ganglioside M2 on the attachment were also observed. Other fimbriate isolates of M. catarrhalis showed decrease in attachment after treatment with ganglioside M2. However there was no effect on attachment when a nonfimbriate isolate was treated with ganglioside M2. This study indicates that the receptor of fimbriate M. catarrhalis on pharyngeal epithelial cells resides in the sequences of ganglioside M2.  相似文献   

16.
Moraxella catarrhalis is one of the major pathogens of respiratory and middle ear infections. Attachment of this bacterium to the surface of human pharyngeal epithelial cells is the first step in the pathogenesis of infections. This study revealed that sulfatide might act as a binding molecule for the attachment of M. catarrhalis to human pharyngeal epithelial cells. Furthermore, six different synthetic sulfatides were found to inhibit the attachment of M. catarrhalis significantly at an optimum concentration of 10 microg/ml. Synthetic sulfatides may have the potential to be used as a therapy to prevent M. catarrhalis infections.  相似文献   

17.
Lipoprotein anchoring in bacteria is mediated by the prolipoprotein diacylglyceryl transferase (Lgt), which catalyzes the transfer of a diacylglyceryl moiety to the prospective N-terminal cysteine of the mature lipoprotein. Deletion of the lgt gene in the gram-positive pathogen Listeria monocytogenes (i) impairs intracellular growth of the bacterium in different eukaryotic cell lines and (ii) leads to increased release of lipoproteins into the culture supernatant. Comparative extracellular proteome analyses of the EGDe wild-type strain and the Delta lgt mutant provided systematic insight into the relative expression of lipoproteins. Twenty-six of the 68 predicted lipoproteins were specifically released into the extracellular proteome of the Delta lgt strain, and this proved that deletion of lgt is an excellent approach for experimental verification of listerial lipoproteins. Consequently, we generated Delta lgt Delta prfA double mutants to detect lipoproteins belonging to the main virulence regulon that is controlled by PrfA. Overall, we identified three lipoproteins whose extracellular levels are regulated and one lipoprotein that is posttranslationally modified depending on PrfA. It is noteworthy that in contrast to previous studies of Escherichia coli, we unambiguously demonstrated that lipidation by Lgt is not a prerequisite for activity of the lipoprotein-specific signal peptidase II (Lsp) in Listeria.  相似文献   

18.
Wang W  Attia AS  Liu L  Rosche T  Wagner NJ  Hansen EJ 《Plasmid》2006,55(1):50-57
Efforts to perform genetic analysis in Moraxella catarrhalis have been hampered by the lack of a cloning vector. M. catarrhalis strain E22 was previously shown to contain plasmid pLQ510 which lacked a selectable antibiotic resistance marker. Several methods were used to eliminate unnecessary DNA from pLQ510. Then, a 1.2 kb spectinomycin resistance cartridge, a multiple cloning site, and the origin of replication from pACYC184 were cloned into this plasmid backbone to obtain the 7.2 kb plasmid pWW102B. This new plasmid could replicate in M. catarrhalis as well as in both Escherichia coli and Haemophilus influenzae. This shuttle vector was used to clone and express two different M. catarrhalis genes, respectively, encoding an adhesin and a protein involved in serum resistance. When these two plasmids were introduced into appropriate M. catarrhalis mutants, they complemented the phenotypic deficiency of each mutant. This is the first report of functional complementation in trans in this pathogen.  相似文献   

19.
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract both in children and in adults. Two subpopulations of this organism have been described that differ in 16S rRNA gene sequence and virulence traits. Three 16S rRNA types have been defined. 2-DE followed by protein identification by MS revealed significant differences in the outer membrane protein (OMP) patterns of each M. catarrhalis 16S rRNA type. Approximately 130 features were detected on the 2-DE map of each M. catarrhalis 16S rRNA type. However, only 50 features were expressed by all strains. Furthermore, direct profiling of isolated OMP using MALDI-TOF MS resulted in a characteristic spectral fingerprint for each 16S rRNA type. Fingerprints remained identical when intact cells instead of isolated OMP were analyzed. This finding suggests that the source of desorbed ions is the outer membrane. Based on the fingerprint we were able to assign 18 well-characterized clinical M. catarrhalis isolates to the correct subpopulation. Therefore, MALDI-TOF of intact M. catarrhalis provides a rapid and robust tool for M. catarrhalis strain typing that could be applied in epidemiological studies.  相似文献   

20.
Lipoproteins are an important class of surface associated proteins that have diverse roles and frequently are involved in the virulence of bacterial pathogens. As prolipoproteins are attached to the cell membrane by a single enzyme, prolipoprotein diacylglyceryl transferase (Lgt), deletion of the corresponding gene potentially allows the characterisation of the overall importance of lipoproteins for specific bacterial functions. We have used a Δlgt mutant strain of Streptococcus pneumoniae to investigate the effects of loss of lipoprotein attachment on cation acquisition, growth in media containing specific carbon sources, and virulence in different infection models. Immunoblots of triton X-114 extracts, flow cytometry and immuno-fluorescence microscopy confirmed the Δlgt mutant had markedly reduced lipoprotein expression on the cell surface. The Δlgt mutant had reduced growth in cation depleted medium, increased sensitivity to oxidative stress, reduced zinc uptake, and reduced intracellular levels of several cations. Doubling time of the Δlgt mutant was also increased slightly when grown in medium with glucose, raffinose and maltotriose as sole carbon sources. These multiple defects in cation and sugar ABC transporter function for the Δlgt mutant were associated with only slightly delayed growth in complete medium. However the Δlgt mutant had significantly reduced growth in blood or bronchoalveolar lavage fluid and a marked impairment in virulence in mouse models of nasopharyngeal colonisation, sepsis and pneumonia. These data suggest that for S. pneumoniae loss of surface localisation of lipoproteins has widespread effects on ABC transporter functions that collectively prevent the Δlgt mutant from establishing invasive infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号