首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterium Sphingomonas sp. A1 produces three kinds of alginate lyases [A1-I (66 kDa), A1-II (25 kDa), and A1-III (40 kDa)] from a single precursor, through posttranslational processing. Overexpression systems for these alginate lyases were constructed in Escherichia coli cells by controlling of the lyase genes under T7 promoter and terminator. Expression levels of A1-I, A1-II, and A1-III in E. coli cells were 3.50, 3.04, and 2.13 kU/liter of culture, respectively, and were over 10-fold higher than those in Sphingomonas sp. A1 cells. Purified A1-I, A1-II, and A1-III from E. coli cells were monomeric enzymes with molecular masses of 63, 25, and 40 kDa, respectively. The depolymerization pattern of alginate with A1-I and A1-II indicated that both enzymes cleaved the glycosidic bond of the polymer endolytically and by beta-elimination reaction. A1-II preferred polyguluronate rather than polymannuronate and released tri- and tetrasaccharides, which have unsaturated uronyl residues at the nonreducing terminal, from alginate as the major final products. A1-I acted equally on both homopolymers and produced di- and trisaccharides as the final products.  相似文献   

2.
A gram-negative bacterium, Sphingomonas sp. strain A1, isolated as a producer of alginate lyase, has a characteristic cell envelope structure and forms a mouth-like pit on its surface. The pit is produced only when the cells have to incorporate and assimilate alginate. An alginate uptake-deficient mutant was derived from cells of strain A1. One open reading frame, algS (1,089 bp), exhibiting homology to the bacterial ATP-binding domain of an ABC transporter, was cloned as a fragment complementing the mutation. algS was followed by two open reading frames, algM1 (972 bp) and algM2 (879 bp), which exhibit homology with the transmembrane permeases of ABC transporters. Disruption of algS of strain A1 resulted in the failure to incorporate alginate and to form a pit. Hexahistidine-tagged AlgS protein (AlgS(His6)) overexpressed in Escherichia coli and purified by Ni(2+) affinity column chromatography showed ATPase activity. Based on these results, we propose the occurrence of a novel pit-dependent ABC transporter system that allows the uptake of macromolecules.  相似文献   

3.
Sphingomonas sp. A1 (strain A1) cells contain three kinds of endotype alginate lyases [A1-I, A1-II, and A1-III], all of which are formed from a common precursor through posttranslational processing. In addition to these lyases, another type of lyase (A1-IV) that acts on oligoalginates exists in the bacterium. A1-IV was overexpressed in Escherichia coli cells through control of its gene under the T7 promoter. The expression level of the enzyme in E. coli cells was 8.6U/L-culture, which was about 270-fold higher than that in strain A1 cells. The enzyme was purified to homogeneity through three steps with an activity yield of 10.9%. The optimal pH and temperature, thermal stability, and mode of action of the purified enzyme were similar to those of the native enzyme from strain A1 cells. A1-IV exolytically degraded oligoalginates, which were produced from alginate through the reaction of A1-I, A1-II, or A1-III, into monosaccharides, indicating that the cooperative actions of these four enzymes cause the complete depolymerization of alginate in strain A1 cells.  相似文献   

4.
An alginate lyase gene of a newly isolated Pseudomonas sp. strain KS-408 was cloned by using PCR with the specific primers designed from homologous nucleotide sequences. A partial protein sequence of KS-408 alginate lyase was homology-modeled on the basis of the crystal structure of A1-III alginate lyase from Sphingomonas sp. strain A1. The proposed 3-D structure of KS-408 alginate lyase shows that Asn-198, His-199, Arg-246, and Tyr-253 residues are conserved for the catalytic active site. The recombinant KS-408-1F (with signal peptide) and KS-408-2F (without signal peptide) alginate lyases with the (His)(6) tag consist of 393 (44.5 kDa) and 372 (42.4 kDa) amino acids with isoelectric points of 8.64 and 8.46, respectively. The purified recombinant KS-408 alginate lyase was very stable when it was incubated at 40 °C for 30 min. Alginate oligosaccharides produced by the KS-408-2F alginate lyase were purified on a Bio-Gel P2 column and analyzed by thin-layer chromatography, fast-protein liquid chromatography, and electrospray ionization mass spectrometry. (1)H NMR data showed that the KS-408-2F alginate lyase cleaved the glycosidic linkages between two mannuronates (mannuronate-β(1-4)-mannuronate) or mannuronate and guluronate (mannuronate-β(1-4)-guluronate), indicating that the KS-408 alginate lyase is a polyM-specific lyase.  相似文献   

5.
Sphingomonas sp. strain A1 has three endotype alginate lyases (A1-I, A1-II [family PL-7], and A1-III [family PL-5]), each of which is encoded by a single gene. In addition to those of these lyases, a gene (the A1-II' gene) showing significant identity with the A1-II gene was present in the bacterial genome and coded for an alginate lyase with broad substrate specificity. Since no expression of A1-II' was observed even in bacterial cells grown on alginate, the A1-II' gene was thought to be a silent gene derived from the A1-II gene, presumably through duplication, modification, and translocation.  相似文献   

6.
目的:双功能褐藻胶裂解酶既能降解聚β-D-甘露糖醛酸,又能降解聚α-L-古罗糖醛酸,可以用一种酶来制备不同结构的褐藻胶寡糖。本文的目的是筛选能产生双功能褐藻胶裂解酶的菌株,对其产酶曲线和降解产物作初步研究。方法:利用唯一碳源培养基筛选产生褐藻胶裂解酶的菌株,通过16SrDNA序列比对进行菌种鉴定,通过在凝胶上检测褐藻胶裂解酶活性来判断发酵上清液中褐藻胶裂解酶的数量及分子量,利用薄层层析确定降解褐藻胶的终产物组成。结果:从褐藻上筛选到一株海洋细菌QY107,鉴定为弧菌属细菌。发酵120h时褐藻胶裂解酶产量为12.32U/mL,其发酵液上清中只含有一种褐藻胶裂解酶,分子量在28kDa左右,并且对聚β—D-甘露糖醛酸和聚α-L-古罗糖醛酸都能降解,降解褐藻胶的终产物主要为三糖。结论:本文筛选到一株弧菌QY107,其发酵液上清中只有一种双功能褐藻胶裂解酶,可用于大量制备褐藻胶三糖。推测该酶具有特殊的催化腔结构,对其结构与功能相互关系的研究可能会发现新的底物结合与催化机制。酶解制备褐藻胶寡糖因其环保高效而越来越受到人们的重视,因此该菌株能促进海洋寡糖类生物制品的开发,在医药、食品、农业、生物燃料等领域具有广阔的应用前景。  相似文献   

7.
Four alginate lyase genes were cloned and sequenced from the genomic DNAs of deep-sea bacteria, namely members of Vibrio and Agarivorans. Three of them were from Vibrio sp. JAM-A9m, which encoded alginate lyases, A9mT, A9mC, and A9mL. A9mT was composed of 286 amino acids and 57% homologous to AlxM of Photobacterium sp. A9mC (221 amino acids) and A9mL (522 amino acids) had the highest degree of similarity to two individual alginate lyases of Vibrio splendidus with 74% and 84% identity, respectively. The other gene for alginate lyase, A1mU, was shotgun cloned from Agarivorans sp. JAM-A1m. A1mU (286 amino acids) showed the highest homology to AlyVOA of Vibrio sp. with 76% identity. All alginate lyases belong to polysaccharide lyase family 7, although, they do not show significant similarity to one another with 14% to 58% identity. Among the above lyases, the recombinant A9mT was purified to homogeneity and characterized. The molecular mass of A9mT was around 28 kDa. The enzyme was remarkably salt activated and showed the highest thermal stability in the presence of NaCl. A9mT favorably degraded mannuronate polymer in alginate. We discussed substrate specificities of family 7 alginate lyases based on their conserved amino acid sequences.  相似文献   

8.
Generally, when microbes assimilate macromolecules, they incorporate low-molecular-weight products derived from macromolecules through the actions of extracellular degrading enzymes. However, a Gram-negative bacterium, Sphingomonas sp. A1, has a smart biosystem for the import and depolymerization of macromolecules. The bacterial cells directly incorporate a macromolecule, alginate, into the cytoplasm through a "superchannel", as we named it. The superchannel consists of a pit on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. Cytoplasmic polysaccharide lyases depolymerize alginate into the constituent monosaccharides. Other than the proteins characterized so far, novel proteins (e.g., flagellin homologs) have been found to be crucial for the import and depolymerization of alginate through genomics- and proteomics-based identification, thus indicating that the biosystem is precisely constructed and regulated by diverse proteins. In this review, we focus on the structure and function of the bacterial biosystem together with the evolution of related proteins.  相似文献   

9.
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically.  相似文献   

10.
Bacterial alginate lyases, which are members of several polysaccharide lyase (PL) families, have important biological roles and biotechnological applications. The mechanisms for maturation, substrate recognition, and catalysis of PL18 alginate lyases are still largely unknown. A PL18 alginate lyase, aly-SJ02, from Pseudoalteromonas sp. 0524 displays a β-jelly roll scaffold. Structural and biochemical analyses indicated that the N-terminal extension in the aly-SJ02 precursor may act as an intramolecular chaperone to mediate the correct folding of the catalytic domain. Molecular dynamics simulations and mutational assays suggested that the lid loops over the aly-SJ02 active center serve as a gate for substrate entry. Molecular docking and site-directed mutations revealed that certain conserved residues at the active center, especially those at subsites +1 and +2, are crucial for substrate recognition. Tyr353 may function as both a catalytic base and acid. Based on our results, a model for the catalysis of aly-SJ02 in alginate depolymerization is proposed. Moreover, although bacterial alginate lyases from families PL5, 7, 15, and 18 adopt distinct scaffolds, they share the same conformation of catalytic residues, reflecting their convergent evolution. Our results provide the foremost insight into the mechanisms of maturation, substrate recognition, and catalysis of a PL18 alginate lyase.  相似文献   

11.
In a soil isolate, Sphingomonas sp. A1, the transport of a macromolecule (alginate: 27 kDa) is mediated by a pit-dependent ATP-binding cassette (ABC) transporter. The transporter is different from other ABC transporters so far analyzed in that its function is dependent on the pit, a mouth-like organ formed on the cell surface only when the cells are compelled to assimilate macromolecules, and in that it allows direct import of macromolecules into cells. The ABC transporter coupled with the pit, which functions as a funnel and/or concentrator of macromolecules to be imported, was designated as the "Super-channel", and in this review, we discuss the three-dimensional structure and specific function of the "Super-channel" for macromolecule import found for the first time in a bacterium.  相似文献   

12.
Structural and functional analyses of alginate lyases are important in the clarification of the biofilm-dependent ecosystem in Pseudomonas aeruginosa and in the development of therapeutic agents for bacterial disease. Most alginate lyases are classified into polysaccharide lyase (PL) family-5 and -7 based on their primary structures. Family PL-7 enzymes are still poorly characterized especially in structural properties. Among family PL-7, a gene coding for a hypothetical protein (PA1167) homologous to Sphingomonas alginate lyase A1-II was found to be present in the P. aeruginosa genome. PA1167 overexpressed in Escherichia coli cleaved glycosidic bonds in alginate and released unsaturated saccharides, indicating that PA1167 is an alginate lyase catalyzing a beta-elimination reaction. The enzyme acted preferably on heteropolymeric regions endolytically and worked most efficiently at pH 8.5 and 40 degrees C. The specific activity of PA1167, however, was much weaker than that of the known alginate lyase AlgL, suggesting that AlgL plays a main role in alginate depolymerization in P. aeruginosa. In addition to this specific activity, differences were found between PA1167 and AlgL in enzyme properties such as molecular mass, optimum pH, salt effect, and substrate specificity. The first crystal structure of the family PL-7 alginate lyase was determined at 2.0 A resolution. PA1167 was found to form a glove-like beta-sandwich composed of 15 beta-strands and 3 alpha-helices. The structural difference between the beta-sandwich PA1167 of family PL-7 and alpha/alpha-barrel AlgL of family PL-5 may be responsible for the enzyme characteristics. Crystal structures of polysaccharide lyases determined so far indicate that they can be assigned to three folding groups having parallel beta-helix, alpha/alpha-barrel, and alpha/alpha-barrel + antiparallel beta-sheet structures as basic frames. PA1167 is the fourth novel folding structure found among polysaccharide lyases.  相似文献   

13.
A Gram-negative bacterium, Sphingomonas sp. A1, has a macromolecule (alginate) import system consisting of a pit on the cell surface and an alginate-specific ATP-binding cassette importer in the inner membrane. Transport of alginate from the pit to the ABC importer is probably mediated by two periplasmic binding protein homologues (AlgQ1 and AlgQ2). Here we describe characteristics of binding of AlgQ1 and AlgQ2 to alginate and its oligosaccharides through surface plasmon resonance biosensor analysis, UV absorption difference spectroscopy, and X-ray crystallography. Both AlgQ1 and AlgQ2 were inducibly expressed in the periplasm of alginate-grown cells of strain A1. Biosensor analysis indicated that both proteins specifically bind alginate with a high degree of polymerization (>100) and that dissociation constants for alginate with an average molecular mass of 26 kDa are 2.3 x 10(-)(7) M for AlgQ1 and 1.5 x 10(-)(7) M for AlgQ2. An in vitro ATPase assay using the membrane complex, including the alginate ABC importer, suggested that both alginate-bound forms of AlgQ1 and AlgQ2 are closely associated with the importer. X-ray crystallography showed that AlgQ1 consisted of two domains separated by a deep cleft that binds alginate oligosaccharides through a conformational change in the two domains. These results directly show that alginate-binding proteins play an important role in the efficient transport of alginate macromolecules with different degrees of polymerization in the periplasm.  相似文献   

14.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

15.
Alginate lyase is a promising biocatalyst because of its application in saccharification of alginate for the production of biochemicals and renewable biofuels. This study described the isolation of a new alginate metabolizing bacterium, Flavobacterium sp. S20, from sludge samples and the characterization of its alginate lyase Alg2A. The alginate lyase gene, alg2A, was obtained by constructing and screening the genomic library of the strain S20 and overexpressed in Escherichia coli. Substrate specificity assays indicated Alg2A preferred poly-α-l-guluronate as a substrate over poly-β-d-mannuronate. In the saccharification process of a high content (10 %, w/v) of sodium alginate, the recombinant alginate lyase Alg2A yielded 152 of mM the reducing sugars after 69 h of reaction, and the amounts of oligosaccharides with a different degree of polymerization (DP) generated by Alg2A gradually accumulated without significant variation in the distribution of oligosaccharide compositions. These results indicated that Alg2A possessed high enzymatic capability for saccharifying the alginate, which could be used in saccharifying the alginate biomass prior to the main fermentation process for biofuels. In addition, Alg2A had a different endolytic reaction mode from both the two commercial alginate lyases and other alginate lyases from polysaccharide lyase family 7 owing to high yields of penta-, hex-, and hepta-saccharides in the hydrolysis products of Alg2A. Thus, Alg2A could be a good tool for the large-scale preparation of alginate oligosaccharides with high DP.  相似文献   

16.
Alginate is a heteropolysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G). The Gram-negative bacterium Sphingomonas sp. A1 directly incorporates alginate into the cytoplasm through the periplasmic solute-binding protein (AlgQ1 and AlgQ2)-dependent ABC transporter (AlgM1-AlgM2/AlgS-AlgS). Two binding proteins with at least four subsites strongly recognize the nonreducing terminal residue of alginate at subsite 1. Here, we show the broad substrate preference of strain A1 solute-binding proteins for M and G present in alginate and demonstrate the structural determinants in binding proteins for heteropolysaccharide recognition through X-ray crystallography of four AlgQ1 structures in complex with saturated and unsaturated alginate oligosaccharides. Alginates with different M/G ratios were assimilated by strain A1 cells and bound to AlgQ1 and AlgQ2. Crystal structures of oligosaccharide-bound forms revealed that in addition to interaction between AlgQ1 and unsaturated oligosaccharides, the binding protein binds through hydrogen bonds to the C4 hydroxyl group of the saturated nonreducing terminal residue at subsite 1. The M residue of saturated oligosaccharides is predominantly accommodated at subsite 1 because of the strict binding of Ser-273 to the carboxyl group of the residue. In unsaturated trisaccharide (ΔGGG or ΔMMM)-bound AlgQ1, the protein interacts appropriately with substrate hydroxyl groups at subsites 2 and 3 to accommodate M or G, while substrate carboxyl groups are strictly recognized by the specific residues Tyr-129 at subsite 2 and Lys-22 at subsite 3. Because of this substrate recognition mechanism, strain A1 solute-binding proteins can bind heteropolysaccharide alginate with different M/G ratios.  相似文献   

17.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4 degrees C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

18.
Cells of Bacillus sp. GL1 extracellularly secrete a gellan lyase with a molecular mass of 130 kDa responsible for the depolymerization of a heteropolysaccharide (gellan), although the gene is capable of encoding a huge protein with a molecular mass of 263 kDa. A maturation route for gellan lyase in the bacterium was determined using anti-gellan lyase antibodies. The fluid of the bacterial exponentially growing cultures on gellan contained two proteins with molecular masses of 260 and 130 kDa, both of which reacted with the antibodies. The 260 kDa protein was purified from the cultured fluid and characterized. The protein exhibited gellan lyase activity and showed similar enzyme properties, such as optimal pH and temperature, thermal stability, and substrate specificity, to those of the 130 kDa gellan lyase. The N-terminal amino acid sequences of the 260 and 130 kDa enzymes were found to be identical. Determination of the C-terminal amino acid of the 130 kDa enzyme indicated that the 260 kDa enzyme is cleaved between the 1205Gly and 1206Leu residues to yield the mature form (130 kDa) of the gellan lyase. Therefore, the mature enzyme consists of 1170 amino acids (36Ala-1205Gly) with a molecular weight of 125,345, which is in good agreement with that calculated from SDS-PAGE analysis. Judging from these results, gellan lyase is first synthesized as a preproform (263 kDa) and then secreted as a precursor (260 kDa) into the medium through cleavage of the signal peptide. Finally, the precursor is post-translationally processed into the N-terminal half domain of 130 kDa as the mature form, the function of C-terminal half domain being unclear.  相似文献   

19.
Alginate lyases are important tools for oligosaccharide preparation, medical treatment, and energy bioconversion. Numerous alginate lyases have been elucidated. However, relatively little is known about their substrate degradation patterns and product-yielding properties, which is a limit to wider enzymatic applications and further enzyme improvements. Herein, we report the characterization and module truncation of Aly5, the first alginate lyase obtained from the polysaccharide-degrading bacterium Flammeovirga. Aly5 is a 566-amino-acid protein and belongs to a novel branch of the polysaccharide lyase 7 (PL7) superfamily. The protein rAly5 is an endolytic enzyme of alginate and associated oligosaccharides. It prefers guluronate (G) to mannuronate (M). Its smallest substrate is an unsaturated pentasaccharide, and its minimum product is an unsaturated disaccharide. The final alginate digests contain unsaturated oligosaccharides that generally range from disaccharides to heptasaccharides, with the tetrasaccharide fraction constituting the highest mass concentration. The disaccharide products are identified as ΔG units. While interestingly, the tri- and tetrasaccharide fractions each contain higher proportions of ΔG to ΔM ends, the larger final products contain only ΔM ends, which constitute a novel oligosaccharide-yielding property of guluronate lyases. The deletion of the noncatalytic region of Aly5 does not alter its M/G preference but significantly decreases the enzymatic activity and enzyme stability. Notably, the truncated protein accumulates large final oligosaccharide products but yields fewer small final products than Aly5, which are codetermined by its M/G preference to and size enlargement of degradable oligosaccharides. This study provides novel enzymatic properties and catalytic mechanisms of a guluronate lyase for potential uses and improvements.  相似文献   

20.
Cells of Sphingomonas sp. A1 (strain A1) directly incorporate a macromolecule, alginate, into cytoplasm through a biosystem, or "super-channel," consisting of a pit on the cell surface, alginate-binding proteins in periplasm, and an ABC transporter in the inner membrane. The pit functions as a concentrator for extracellular alginate. Through differential display analysis, a protein (p8) with a molecular mass of 20kDa and a pI of 7.4 was found to be inducibly expressed in the outer membrane of alginate-grown cells. The gene coding for p8 was identified in the genome of strain A1 and shown to be similar to that for the polyhydroxyalkanoate granule-associated protein of Ralstonia eutropha. The disruptant of p8 gene showed significant growth retardation in the alginate medium. An overexpression system for p8 was constructed in Escherichia coli, and the protein was purified and characterized. Surface plasmon resonance biosensor analysis indicated that p8 is able to bind alginate most efficiently at pH 4.0. The above results indicate that p8 is a cell surface protein able to bind alginate and facilitates the concentration of alginate in the pit on the cell surface of strain A1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号