首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pathway of HCV IRES-mediated translation initiation   总被引:12,自引:0,他引:12  
Otto GA  Puglisi JD 《Cell》2004,119(3):369-380
The HCV internal ribosome entry site (IRES) directly regulates the assembly of translation initiation complexes on viral mRNA by a sequential pathway that is distinct from canonical eukaryotic initiation. The HCV IRES can form a binary complex with an eIF-free 40S ribosomal subunit. Next, a 48S-like complex assembles at the AUG initiation codon upon association of eIF3 and ternary complex. 80S complex formation is rate limiting and follows the GTP-dependent association of the 60S subunit. Efficient assembly of the 48S-like and 80S complexes on the IRES mRNA is dependent upon maintenance of the highly conserved HCV IRES structure. This revised model of HCV IRES translation initiation provides a context to understand the function of different HCV IRES domains during translation initiation.  相似文献   

2.
Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5' untranslated region of the genomic RNA that drives cap-independent initiation of translation of the viral message. The approximate secondary structure and minimum functional length of the HCV IRES are known, and extensive mutagenesis has established that nearly all secondary structural domains are critical for activity. However, the presence of an IRES RNA tertiary fold and its functional relevance have not been established. Using chemical and enzymatic probes of the HCV IRES RNA in solution, we show that the IRES adopts a unique three-dimensional structure at physiological salt concentrations in the absence of additional cofactors or the translation apparatus. Folding of the IRES involves cooperative uptake of magnesium and is driven primarily by charge neutralization. This tertiary structure contains at least two independently folded regions which closely correspond to putative binding sites for the 40 S ribosomal subunit and initiation factor 3 (eIF3). Point mutations that inhibit IRES folding also inhibit its function, suggesting that the IRES tertiary structure is essential for translation initiation activity. Chemical and enzymatic probing data and small-angle X-ray scattering (SAXS) experiments in solution show that upon folding, the IRES forms an extended structure in which functionally important loops are exposed. These results suggest that the 40 S ribosomal subunit and eIF3 bind an HCV IRES that is prefolded to spatially organize recognition domains.  相似文献   

3.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

4.
Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in mammalian cells, abolished translation of the second open reading frame. Internal initiation mediated by the HCV IRES was independent of the nonsense-mediated decay pathway and the cap binding protein eIF4E, indicating that translation is not a result of mRNA degradation or 5'-end-dependent initiation. Human La protein binds the HCV IRES and is required for efficient internal initiation. Disruption of the S. cerevisiae genes that encode La protein orthologs and synthesis of wild-type human La protein in yeast had no effect on HCV IRES-dependent translation. Polypyrimidine tract-binding protein (Ptb) and poly-(rC)-binding protein 2 (Pcbp2), which may be required for HCV IRES-dependent initiation in mammalian cells, are not encoded within the S. cerevisiae genome. HCV IRES-dependent translation in S. cerevisiae was independent of human Pcbp2 protein and stimulated by the presence of human Ptb protein. These findings demonstrate that the genome of S. cerevisiae encodes all proteins necessary for internal initiation of translation mediated by the HCV IRES.  相似文献   

5.
6.
Kim JH  Park SM  Park JH  Keum SJ  Jang SK 《The EMBO journal》2011,30(12):2454-2464
Translation of most mRNAs is suppressed under stress conditions. Phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF2), which delivers initiator tRNA (Met-tRNA(i)) to the P site of the 40S ribosomal subunit, is responsible for such translational suppression. However, translation of hepatitis C viral (HCV) mRNA is refractory to the inhibitory effects of eIF2α phosphorylation, which prevents translation by disrupting formation of the eIF2-GTP-Met-tRNA(i) ternary complex. Here, we report that eIF2A, an alternative initiator tRNA-binding protein, has a key role in the translation of HCV mRNA during HCV infection, in turn promoting eIF2α phosphorylation by activating the eIF2α kinase PKR. Direct interaction of eIF2A with the IIId domain of the HCV internal ribosome entry site (IRES) is required for eIF2A-dependent translation. These data indicate that stress-independent translation of HCV mRNA occurs by recruitment of eIF2A to the HCV IRES via direct interaction with the IIId domain and subsequent loading of Met-tRNA(i) to the P site of the 40S ribosomal subunit.  相似文献   

7.
Translation of the hepatitis C virus (HCV) genomic RNA initiates from an internal ribosome entry site (IRES) in its 5′ untranslated region and requires a minimal subset of translation initiation factors to occur, namely eukaryotic initiation factor (eIF) 2 and eIF3. Low-resolution structural information has revealed how the HCV IRES RNA binds human eIF3 and the 40S ribosomal subunit and positions the start codon for initiation. However, the exact nature of the interactions between the HCV IRES RNA and the translational machinery remains unknown. Using limited proteolysis and mass spectrometry, we show that distinct regions of human eIF3 are sufficient for binding to the HCV IRES RNA and the 40S subunit. Notably, the eIF3 subunit eIF3b is protected by HCV IRES RNA binding, yet is exposed in the complex when compared to subunits eIF3e, eIF3f, eIF3h, and eIF3l. Limited proteolysis reveals that eIF3 binding to the 40S ribosomal subunit occurs through many redundant interactions that can compensate for each other. These data suggest how the HCV IRES binds to specific regions of eIF3 to target the translational machinery to the viral genomic RNA and provide a framework for modeling the architecture of intact human eIF3.  相似文献   

8.
Many viral mRNAs contain a 5′-UTR RNA element called internal ribosome-entry site (IRES), which bypasses the requirement of some canonical initiation factors allowing cap-independent translation. The IRES of hepatitis-C virus drives translation by directly recruiting 40S ribosomal subunits and binds to eIF3 which plays a critical role in both cap-dependent and cap-independent translation. However, the molecular basis for eIF3 activity in either case remains enigmatic. Here we report that subunit b of the eIF3 complex directly binds to HCV IRES domain III via its N-terminal-RRM. Because eIF3b was previously shown to be involved in eIF3j binding, biological implications are discussed.  相似文献   

9.
The strategies developed by internal ribosome entry site (IRES) elements to recruit the translational machinery are poorly understood. In this study we show that protein-RNA interaction of the eIF4G translation initiation factor with sequences of the foot-and-mouth disease virus (FMDV) IRES is a key determinant of internal translation initiation in living cells. Moreover, we have identified the nucleotides required for eIF4G-RNA functional interaction, using native proteins from FMDV-susceptible cell extracts. Substitutions in the conserved internal AA loop of the base of domain 4 led to strong impairment of both eIF4G-RNA interaction in vitro and IRES-dependent translation initiation in vivo. Conversely, substitutions in the vicinity of the internal AA loop that did not impair IRES activity retained their ability to interact with eIF4G. Direct UV-crosslinking as well as competition assays indicated that domains 1-2, 3, and 5 of the IRES did not contribute to this interaction. In agreement with this, binding to domain 4 alone was as efficient as to the full-length IRES. The C-terminal fragment of eIF4G, proteolytically processed by the FMDV Lb protease, was sufficient to interact with the IRES or to its domain 4 alone. Additionally, we show here that binding of the eIF4B initiation factor to the IRES required domain 5 sequences. Moreover, eIF4G-IRES interaction was detected in the absence of eIF4B-IRES binding, suggesting that both initiation factors interact with the 3' region of the IRES but use different residues. The strong correlation found between eIF4G-RNA interaction and IRES activity in transfected cells suggests that eIF4G acts as a linker to recruit the translational machinery in IRES-dependent initiation.  相似文献   

10.
Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we show that two of the secondary structure elements of the poliovirus IRES, domain V and, to a minor extent, domain VI, are the determinants for binding of the eukaryotic initiation factor eIF4B. Several mutations in domain V which are known to greatly affect poliovirus growth also seriously impair the binding of eIF4B. The interaction of eIF4B with the IRES is not dependent on the presence of the polypyrimidine tract-binding protein, which also binds to the poliovirus IRES. In contrast to its weak interaction with cellular mRNAs, eIF4B remains tightly associated with the poliovirus IRES during the formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. These results indicate that the interaction of eIF4B with the 3" region of the poliovirus IRES may be directly involved in translation initiation.  相似文献   

11.
Efficient translation of most eukaryotic mRNAs results from synergistic cooperation between the 5' m(7)GpppN cap and the 3' poly(A) tail. In contrast to such mRNAs, the polyadenylated genomic RNAs of picornaviruses are not capped, and translation is initiated internally, driven by an extensive sequence termed IRES (for internal ribosome entry segment). Here we have used our recently described poly(A)-dependent rabbit reticulocyte lysate cell-free translation system to study the role of mRNA polyadenylation in IRES-driven translation. Polyadenylation significantly stimulated translation driven by representatives of each of the three types of picornaviral IRES (poliovirus, encephalomyocarditis virus, and hepatitis A virus, respectively). This did not result from a poly(A)-dependent alteration of mRNA stability in our in vitro translation system but was very sensitive to salt concentration. Disruption of the eukaryotic initiation factor 4G-poly(A) binding protein (eIF4G-PABP) interaction or cleavage of eIF4G abolished or severely reduced poly(A) tail-mediated stimulation of picornavirus IRES-driven translation. In contrast, translation driven by the flaviviral hepatitis C virus (HCV) IRES was not stimulated by polyadenylation but rather by the authentic viral RNA 3' end: the highly structured X region. X region-mediated stimulation of HCV IRES activity was not affected by disruption of the eIF4G-PABP interaction. These data demonstrate that the protein-protein interactions required for synergistic cooperativity on capped and polyadenylated cellular mRNAs mediate 3'-end stimulation of picornaviral IRES activity but not HCV IRES activity. Their implications for the picornavirus infectious cycle and for the increasing number of identified cellular IRES-carrying mRNAs are discussed.  相似文献   

12.
Initiation of protein synthesis on picornavirus RNA requires an internal ribosome entry site (IRES). Typically, picornavirus IRES elements contain about 450 nucleotides (nt) and use most of the cellular translation initiation factors. However, it is now shown that just 280 nt of the porcine teschovirus type 1 Talfan (PTV-1) 5' untranslated region direct the efficient internal initiation of translation in vitro and within cells. In toeprinting assays, assembly of 48S preinitiation complexes from purified components on the PTV-1 IRES was achieved with just 40S ribosomal subunits plus eIF2 and Met-tRNA(i)(Met). Indeed, a binary complex between 40S subunits and the PTV-1 IRES is formed. Thus, the PTV-1 IRES has properties that are entirely different from other picornavirus IRES elements but highly reminiscent of the hepatitis C virus (HCV) IRES. Comparison between the PTV-1 IRES and HCV IRES elements revealed islands of high sequence identity that occur in regions critical for the interactions of the HCV IRES with the 40S ribosomal subunit and eIF3. Thus, there is significant functional and structural similarity between the IRES elements from the picornavirus PTV-1 and HCV, a flavivirus.  相似文献   

13.
Hepatitis C virus (HCV) infection is treated with interferon (IFN)-based therapy. The mechanisms by which IFN suppresses HCV replication are not known, and only limited efficacy is achieved with therapy because the virus directs mechanisms to resist the host IFN response. In the present study we characterized the effects of IFN action upon the replication of two distinct quasispecies of an HCV replicon whose encoded NS5A protein exhibited differential abilities to bind and inhibit protein kinase R (PKR). Metabolic labeling experiments revealed that IFN had little overall effect upon HCV protein stability or polyprotein processing but specifically blocked translation of the HCV RNA, such that the replication of both viral quasispecies was suppressed by IFN treatment of the Huh7 host cells. However, within cells expressing an NS5A variant that inhibited PKR, we observed a reduced level of eukaryotic initiation factor 2 alpha subunit (eIF2alpha) phosphorylation and a concomitant increase in HCV protein synthetic rates, enhancement of viral RNA replication, and a partial rescue of viral internal ribosome entry site (IRES) function from IFN suppression. Assessment of the ribosome distribution of the HCV replicon RNA demonstrated that the NS5A-mediated block in eIF2alpha phosphorylation resulted in enhanced recruitment of the HCV RNA into polyribosome complexes in vivo but only partially rescued the RNA from polyribosome dissociation induced by IFN treatment. Examination of cellular proteins associated with HCV-translation complexes in IFN-treated cells identified the P56 protein as an eIF3-associated factor that fractionated with the initiator ribosome-HCV RNA complex. Importantly, we found that P56 could independently suppress HCV IRES function both in vitro and in vivo, but a mutant P56 that was unable to bind eIF3 had no suppressive action. We conclude that IFN blocks HCV replication through translational control programs involving PKR and P56 to, respectively, target eIF2- and eIF3-dependent steps in the viral RNA translation initiation process.  相似文献   

14.
Enhancement of eukaryotic messenger RNA (mRNA) translation initiation by the 3′ poly(A) tail is mediated through interaction of poly(A)-binding protein with eukaryotic initiation factor (eIF) 4G, bridging the 5′ terminal cap structure. In contrast to cellular mRNA, translation of the uncapped, non-polyadenylated hepatitis C virus (HCV) genome occurs independently of eIF4G and a role for 3′-untranslated sequences in modifying HCV gene expression is controversial. Utilizing cell-based and in vitro translation assays, we show that the HCV 3′-untranslated region (UTR) or a 3′ poly(A) tract of sufficient length interchangeably stimulate translation dependent upon the HCV internal ribosomal entry site (IRES). However, in contrast to cap-dependent translation, the rate of initiation at the HCV IRES was unaffected by 3′-untranslated sequences. Analysis of post-initiation events revealed that the 3′ poly(A) tract and HCV 3′-UTR improve translation efficiency by enabling termination and possibly ribosome recycling for successive rounds of translation.  相似文献   

15.
The hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA drives internal initiation of viral protein synthesis during host cell infection. In the tertiary structure of the IRES RNA, two helical junctions create recognition sites for direct binding of the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). The 2.8 A resolution structure of the IIIabc four-way junction, which is critical for binding eIF3, reveals how junction nucleotides interact with an adjacent helix to position regions directly involved in eIF3 recognition. Two of the emergent helices stack to form a nearly continuous A-form duplex, while stacking of the other two helices is interrupted by the insertion of junction residues into the helix minor groove. This distorted stack probably serves as an important recognition surface for the translational machinery.  相似文献   

16.
A cornerstone of the antiviral interferon response is phosphorylation of eukaryotic initiation factor (eIF)2alpha. This limits the availability of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes, reduces formation of 43S preinitiation complexes, and blocks viral (and most cellular) mRNA translation. However, many viruses have developed counterstrategies that circumvent this cellular response. Herein, we characterize a novel class of translation initiation inhibitors that block ternary complex formation and prevent the assembly of 43S preinitiation complexes. We find that translation driven by the HCV IRES is refractory to inhibition by these compounds at concentrations that effectively block cap-dependent translation in vitro and in vivo. Analysis of initiation complexes formed on the HCV IRES in the presence of inhibitor indicates that eIF2alpha and Met-tRNA(i)(Met) are present, defining a tactic used by HCV to evade part of the antiviral interferon response.  相似文献   

17.
The positive-strand RNA genome of the Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) in the 5′untranslated region (5′UTR) and structured sequence elements within the 3′UTR, but no poly(A) tail. Employing a limited set of initiation factors, the HCV IRES coordinates the 5′cap-independent assembly of the 43S pre-initiation complex at an internal initiation codon located in the IRES sequence. We have established a Huh7 cell-derived in vitro translation system that shows a 3′UTR-dependent enhancement of 43S pre-initiation complex formation at the HCV IRES. Through the use of tobramycin (Tob)-aptamer affinity chromatography, we identified the Insulin-like growth factor-II mRNA-binding protein 1 (IGF2BP1) as a factor that interacts with both, the HCV 5′UTR and 3′UTR. We report that IGF2BP1 specifically enhances translation at the HCV IRES, but it does not affect 5′cap-dependent translation. RNA interference against IGF2BP1 in HCV replicon RNA-containing Huh7 cells reduces HCV IRES-mediated translation, whereas replication remains unaffected. Interestingly, we found that endogenous IGF2BP1 specifically co-immunoprecipitates with HCV replicon RNA, the ribosomal 40S subunit, and eIF3. Furthermore eIF3 comigrates with IGF2BP1 in 80S ribosomal complexes when a reporter mRNA bearing both the HCV 5′UTR and HCV 3′UTR is translated. Our data suggest that IGF2BP1, by binding to the HCV 5′UTR and/or HCV 3′UTR, recruits eIF3 and enhances HCV IRES-mediated translation.  相似文献   

18.
The positive-strand RNA genomes of caliciviruses are not capped, but are instead covalently linked at their 5' ends to a viral protein called VPg. The lack of a cap structure typical of eukaryotic mRNA and absence of an internal ribosomal entry site suggest that VPg may function in translation initiation on calicivirus RNA. This hypothesis was tested by analyzing binding of Norwalk virus VPg to translation initiation factors. The eIF3d subunit of eIF3 was identified as a binding partner of VPg by yeast two-hybrid analysis. VPg bound to purified mammalian eIF3 and to eIF3 in mammalian cell lysates. To test the effects of the VPg- eIF3 interaction on translation, VPg was added to cell-free translation reactions programmed with either capped reporter RNA, an RNA containing an EMCV internal ribosomal entry site (IRES) or an RNA with a cricket paralysis virus IRES. VPg inhibited translation of all reporter RNAs in a dose-dependent manner. Together, the data suggest that VPg may play a role in initiating translation on calicivirus RNA through unique protein-protein interactions with the translation machinery.  相似文献   

19.
Hepatitis C virus (HCV) translation initiation is directed by an internal ribosome entry site (IRES) and regulated by distant regions at the 3′-end of the viral genome. Through a combination of improved RNA chemical probing methods, SHAPE structural analysis and screening of RNA accessibility using antisense oligonucleotide microarrays, here, we show that HCV IRES folding is fine-tuned by the genomic 3′-end. The essential IRES subdomains IIIb and IIId, and domain IV, adopted a different conformation in the presence of the cis-acting replication element and/or the 3′-untranslatable region compared to that taken up in their absence. Importantly, many of the observed changes involved significant decreases in the dimethyl sulfate or N-methyl-isatoic anhydride reactivity profiles at subdomains IIIb and IIId, while domain IV appeared as a more flexible element. These observations were additionally confirmed in a replication-competent RNA molecule. Significantly, protein factors are not required for these conformational differences to be made manifest. Our results suggest that a complex, direct and long-distance RNA–RNA interaction network plays an important role in the regulation of HCV translation and replication, as well as in the switching between different steps of the viral cycle.  相似文献   

20.
Hepatitis C is a major public health concern, with an estimated 170 million people infected worldwide and an urgent need for new drug development. An attractive therapeutic approach is to prevent the ‘cap-independent’ translation initiation of the viral proteins by interfering with both the structure and function of the hepatitis C viral internal ribosomal entry site (HCV IRES). Towards this goal, we report the design, synthesis and purification of novel bi-functional molecules containing DNA or RNA antisenses attached to functional groups performing RNA hydrolysis. These 5′ or 3′-coupled conjugates bind the HCV IRES with affinity and specificity and elicit targeted hydrolysis of the viral genomic RNA after short (1 h) incubation at low (500 nM) concentration at 37°C in vitro. Additional secondary cleavage sites are induced and their mapping within the RNA structure indicates that functional domains IIIb-e are excised from the IRES that, based on cryo-EM studies, becomes incapable of binding the small ribosomal subunit and initiation factor 3 (eIF3). All these molecules inhibit, in a dose-dependent manner, the ‘IRES-dependent’ translation in vitro. The 5′-coupled imidazole conjugate reduces viral protein synthesis by half at a 300 nM concentration (IC50), corresponding to a 4-fold increase of activity when compared to the naked oligonucleotide. These new conjugates are now being tested for activity on infected hepatic cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号