首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are long-chain polyunsaturated fatty acids (PUFAs) that belong to the omega-3 group. They are essential fatty acids found in phospholipid of cell membranes. There is strong evidence that these nutrients may also favorably modulate many diseases. Primary sources of omega-3 PUFAs in the human diet are fish and fish-derived products. The fishing industry worldwide, however, is becoming unable to satisfy the growing demand for these PUFAs. A promising cost-effective alternative source of PUFAs is bacterial production. We identified 40 Antarctic marine bacterial isolates by 16S rRNA gene sequence analysis. Fifteen genera in three phyla were represented in the collection. Isolates were tested for ability to produce EPA using a method in which their ability to reduce 2,3,5-triphenyltetrazolium chloride (TTC) is determined and by gas chromatography coupled to mass spectrometry (GC–MS). All isolates could reduce TTC, and GC–MS analysis showed that four produced EPA and that six produced DHA. We show for the first time that isolates identified as Cellulophaga, Pibocella and Polaribacter can produce EPA and DHA, only DHA or only EPA, respectively. One isolate, Shewanella sp. (strain 8-5), is indicated to be a good candidate for further study to optimize growth and EPA production. In conclusion, a rapid method was tested for identification of new EPA producing strains from marine environments. New EPA and DHA producing strains were found as well as a potentially useful PUFA production strain.  相似文献   

2.
We determined the effects of cultivation conditions (nitrogen source, salinity, light intensity, temperature) on the composition of polyunsaturated fatty acids (PUFAs) and the production of eicosapentaenoic acid (EPA) in the laboratory cultured eustigmatophycean microalga, Trachydiscus minutus. T. minutus was capable of utilizing all nitrogen compounds tested (potassium nitrate, urea, ammonium nitrate, ammonium carbonate) with no differences in growth and only minor differences in fatty acid (FA) compositions. Ammonium carbonate was the least appropriate for lipid content and EPA production, while urea was as suitable as nitrates. Salinity (0.2 % NaCl) slightly stimulated EPA content and inhibited growth. Increasing salinity had a marked inhibitory effect on growth and PUFA composition; salinity at or above 0.8 % NaCl was lethal. Both light intensity and temperature had a distinct effect on growth and FA composition. The microalga grew best at light intensities of 470–1,070 μmol photons m?2 s?1 compared to 100 μmol photons m?2 s?1, and at 28 °C; sub-optimal temperatures (20, 33 °C) strongly inhibited growth. Saturated fatty acids increased with light intensity and temperature, whereas the reverse trend was found for PUFAs. Although the highest level of EPA (as a proportion of total FAs) was achieved at a light intensity of 100 μmol photons m?2 s?1 (51.1?± 2.8 %) and a temperature of 20 °C (50.9?±?0.8 %), the highest EPA productivity of about 30 mg L?1?day?1 was found in microalgae grown at higher light intensities, at 28 °C. Overall, for overproduction of EPA in microalgae, we propose that outdoor cultivation be used under conditions of a temperate climatic zone in summer, using urea as a nitrogen source.  相似文献   

3.
The health beneficial omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are naturally synthesized by diatoms through consecutive steps of fatty acid elongase and desaturase enzymes. In Thalassiosira pseudonana, these fatty acids constitute about 10–20 % of the total fatty acids, with EPA accumulation being five to ten times higher than DHA. In order to identify the subcellular localization of enzymes in the pathway of LC-PUFA biosynthesis in T. pseudonana and to manipulate the production of EPA and DHA, we generated constructs for overexpressing each of the T. pseudonana long-chain fatty acid elongase genes. Full-length proteins were fused to GFP, and transgenic lines were generated. In addition, overexpressed native proteins with no GFP fusion were tested. The subcellular localization of each elongase protein was determined. We then examined the total amount of lipids and analyzed the fatty acid profile in each of the transgenic lines compared to wild type. Lines with overexpressed elongases showed an increase of up to 1.4-fold in EPA and up to 4.5-fold in DHA, and the type of fatty acid that was increased (EPA vs. DHA) depended on the type of elongase that was overexpressed. This data informs future metabolic engineering approaches to further improve EPA and DHA content in diatoms.  相似文献   

4.
Growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae), cultivated under different combinations of irradiance, temperature, and nutrients, were compared. The microalgae were grown in batch mode for 10 days, in f/2 medium at 33‰ salinity. The experimental design was a 25 factorial design with the following variables: nitrate [0.441 mM (N1) and 3.529 mM (N2)], phosphate [0.018 mM (P1) and 0.144 mM (P2)], temperature [19 and 29 °C], continued irradiance [100 μmol photons m?2 s?1 (low light, LL), and 200 μmol photons m?2 s?1 (high light, HL)] and microalgae strains (CS-174 and CS-24). Growth parameters, protein and lipid content, and fatty acids profiles were analyzed. Principal component analysis showed that combined high nitrate, high phosphate availability, and high light, regardless of temperature, achieved the best growth in both strains; while combined high nitrate and high phosphate, regardless of irradiance or temperature, resulted in the highest protein accumulation in both strains. On the other hand, the content of total lipid, arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, as well as EPA/DHA ratio, were strongly influenced by temperature in both strains. Strain CS-174 grew better and achieved significantly higher (p?<?0.05) total lipid content (maximum 25.4?±?1.5 %), ARA, EPA and DHA content (maximum 3.5, 13.2 and 6.5 %, respectively), and EPA / DHA ratio (maximum 2.03), than strain CS-24, being thus more suitable for use in aquaculture nutrition.  相似文献   

5.
The flow of long-chain polyunsaturated fatty acids (PUFAs) of the omega-3 family, namely, eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), exported by amphibian metamorphs from water to terrestrial ecosystems in the Medveditsa River floodplain, was quantified for the first time. The total biomass export by three amphibian species (Pelobates fuscus, Bombina bombina, and Pelophylax ridibundus) per unit area of the lake surface was 0.594 g/m2 per year (as a mean for 2 years). The biomass flow per unit area of land was 0.726 g/ha per year (0.302 g/ha per year for organic carbon) in 2015–2016. The average annual total removal of EPA + DHA by amphibians from the floodplain lake was 1.47 mg/m2 of water surface area. Due to the high content of EPA and DHA in biomass, amphibians are potentially a valuable food for terrestrial predators having no access to other sources of essential PUFAs.  相似文献   

6.
ABSTRACT: Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.  相似文献   

7.
The cryptophyte Rhodomonas is an important feed item for live feed organisms in aquaculture and although large-scale cultivation of Rhodomonas in photobioreactors (PBRs) is feasible, the production needs to be optimized through further studies of specific factors. Through small-scale experiments, several factors relevant for an on-going large-scale production of Rhodomonas were studied and the results presented here provide a useful insight on factors that can help future large-scale production. The content of polyunsaturated fatty acids (PUFAs) and the temporal sedimentation was compared in five strains of Rhodomonas. Strain K-1487 (R. salina) was chosen as the most suitable for cultivation in PBRs due to a good biochemical content of PUFAs and low cell sedimentation. The f/2 growth medium used for cultivation was modified by excluding CoCl2 which did not affect either growth rate or cell content of the PUFAs, DHA, EPA, and ARA. Furthermore, the growth medium was modified by adding the nitrogen source as ammonium (NH4+), nitrate (NO3?), urea, or combinations of these, with NH4+ yielding a significantly higher growth rate of 1.30?±?0.07 day?1. The seawater used for cultivation was exposed to three types of treatments which gave no significant difference in the growth rate: (1) filtration (0.2 μm)?+?autoclaving, (2) filtration (0.2 μm)?+?UV-radiation, and (3) filtration (0.2 μm). Finally, the results for growth rates of inocula at initial densities ranging from 2000 to 200,000 cells mL?1 showed that growth rate decreased with increasing density but a final density of 106 cells mL?1 was obtained fastest with the highest initial density. With the present findings, several barriers for effective cultivation of Rhodomonas are solved and future large-scale production has become a great step closer.  相似文献   

8.
For the first time, the quantity of protectors of cardiovascular deceases—omega-3 polyunsaturated fatty acids, eicosapentaenoic (20:5n-3, EPA) and docosahexaenoic (22:6n-3, DHA), obtained through fish (Eurasian perch) catch in water bodies of different trophic status was determined. A formula was drawn to calculate the quantity of obtained EPA + DHA (kg km–2 year–1) depending on the concentration of total phosphorus in water. It is found that the maximum quantity of EPA + DHA can be obtained by humans from fish caught in mesotrophic water bodies.  相似文献   

9.
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 ) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.  相似文献   

10.
Recently, microalgae have gained a lot of attention because of their ability to produce fatty acids in their surrounding environments. The present paper describes the influence of organic carbon on the different fatty acid pools including esterified fatty acids, intracellular free fatty acids and extracellular free fatty acids in Ochromonas danica. It also throws light on the ability of O. danica to secrete free fatty acids in the growth medium under photoautotrophic and mixotrophic conditions. Biomass production of photoautotrophically grown O. danica was higher than that of mixotrophically grown, where a cellular biomass formation of 1.8 g L?1 was observed under photoautotrophic condition which was about five folds higher than that under mixotrophic conditions. Contrary, the esterified fatty acid content reached up to 99 mg g?1 CDW under photoautotrophic conditions at the late exponential phase, while during mixotrophic conditions a maximum of 212 mg g?1 CDW was observed at the stationary phase. Furthermore, O. danica cells grown under mixotrophic conditions showed higher intracellular free fatty acid and extracellular free fatty acid contents (up to 51 and 20 mg g?1 CDW, respectively) than cells grown under photoautotrophic conditions (up to 26 and 4 mg g?1 CDW, respectively). The intra- and extracellular free fatty acids consisted of a high proportion of polyunsaturated fatty acids, mainly C18:2n?6, C18:3n?3 and C20:4n?6.  相似文献   

11.
Omega-3 fatty acids are essential fatty acids for human health. Therefore, increasing both percentage of omega-3 and a better fatty acid profile in fish fillets is one of the breeding goals in aquaculture. However, it is difficult to increase the omega-3 content in fish fillets, as the phenotypic selection of these traits is not easily feasible. To facilitate the genetic improvement of the Asian seabass for optimal fatty acid profiles, a genome-wide scan for quantitative trait loci (QTL) affecting fatty acid level in the flesh of the Asian seabass was performed on an F2 family containing 314 offspring. All family members were genotyped using 123 informative microsatellites and 22 SNPs. High percentages of n-3 polyunsaturated fatty acids (PUFA), especially C22:6 (DHA 16.48?±?3.09 %) and C20:5 (EPA 7.19?±?0.86 %) were detected in the flesh. One significant and 54 suggestive QTL for different fatty acids and a water content trait were detected on the whole genome. QTL for C18:0b was located on linkage groups (LG) 5. QTL for total n-3 PUFA content in flesh were mapped onto LG6 and LG23 with the phenotypic variance explained ranging from 3.8 to 6.3 %. Four QTL for C22:6 were detected on LG6, LG23, and LG24, explaining 3.9 to 4.9 % of the phenotypic variance, respectively. Mapping of QTL for contents of different fatty acids is the first step towards improving the omega-3 content in the fillets of fish by using marker-assisted selection and is important for understanding the biology of fatty acid deposition.  相似文献   

12.
Omega‐3 (also called n‐3) long‐chain polyunsaturated fatty acids (≥C20; LC‐PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega‐3 LC‐PUFAs, i.e. eicosapentaenoic acid (20:5 n‐3, EPA) and docosahexaenoic acid (22:6 n‐3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega‐3 LC‐PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non‐native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.  相似文献   

13.
Fish are recognized as the main source of physiologically important omega-3 long-chain polyunsaturated fatty acids, namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for human nutrition. However, muscle tissue contents of these fatty acids in diverse fish species, i.e., their nutritive value for humans, varied within two orders of magnitude. We reviewed contents of EPA and DHA, measured by similar methods using an internal standard during chromatography as mg per g of wet mass in 172 fish species belonging to 16 orders, to evaluate probable variations in phylogenetic and ecological drivers. EPA + DHA content varied from 25.6 mg g?1 of wet mass (Sardinops sagax) to 0.12 mg g?1 (Gymnura spp.). Multidimensional redundancy analysis revealed that among phylogenetic, ecomorphological and abiotic environmental factors, the highest proportion of variation contribution belonged to the shared contribution of sets of phylogenetic and ecomorphological factors. Specifically, the highest values of EPA + DHA content were characteristic of fish belonging to the orders Clupeiformes or Salmoniformes, were pelagic fast swimmers, ate zooplankton and inhabited marine waters or migrated from fresh to marine waters (anadromous migrations). High EPA and DHA content in muscle tissues of the above species appeared to be a metabolic adaptation for fast continuous swimming. In contrast to common beliefs, our meta-analysis did not support the significant influence of higher trophic levels (piscivory) and cold environments (homeoviscous adaptation) on EPA and DHA content in fish. However, many causes of high and low levels of physiologically important fatty acids in certain fish species remained unexplained and require evaluation in future studies.  相似文献   

14.
Efforts to increase the productivity of microalgal cultures have been focused on the improvement of photobioreactors, but little attention has been paid to the nutritional requirements of microalgae in order to improve culture media formulation. In this study, the main goal was obtaining a high productivity for Tetraselmis suecica (Chlorophyta) in semicontinuous culture by adding magnesium (Mg), silicon (Si), and strontium (Sr) at concentrations from 0.01 to 10 mM; at the time, the effect on steady-state cell density, biochemical composition, and antioxidant activity of T. suecica was evaluated. Because productivity is higher in high-density cultures, the work was focused many times to cell density. Mg (3 mM) and Sr (0.1 mM) added separately reached the highest steady-state cell density (7.0?×?106?±?0.4 cells mL?1) in comparison to control (4.2?±?0.1 cells mL?1), but simultaneous addition had a synergic effect, achieving 8.7?×?106?±?0.6 cells mL?1. Silicon (3 mM) significantly affected the steady-state cell density, reaching 6.0?±?0.3 cells mL?1 and increased the cell ash-free dry weight, reaching 127?±?7.9 pg cell?1 in comparison to control (102.7?±?5.0 pg cell?1), resulting in an ash-free dry weight productivity of 0.75?±?0.07 g?L?1 day?1. The highest fatty acids content and antioxidant activity, measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method were obtained with Sr 10 mM. Sr treatments showed a high correlation (R 2?=?0.98) between DPPH inhibition and polyphenolic content, explaining its high antioxidant activity. Therefore, the addition of Mg, Si, and Sr to culture medium of T. suecica is recommended to achieve high steady-state cell density in semicontinuous cultures.  相似文献   

15.
Due to the established health benefits of omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), there is a globally increasing demand for alternative natural resources with appropriate fatty acid profiles. To assess the suitability of macroalgae as a source, 16 species (nine Phaeophyceae, five Rhodophyta and two Chlorophyta) were collected at two seasons (June and November) from the Irish west Coast, and total fatty acid contents and specific profiles were determined. Total fatty acid contents, expressed per percentage of dry weight, ranged from 6.4 %?±?0.3 (Pelvetia canaliculata, Phaeophyceae) to 0.8 %?±?0.2 (Porphyra dioica, Rhodophyta). Most common fatty acids were palmitic (16:0), oleic (OLE, 18:1 n-9), α-linolenic (ALA, 18:3 n-3), arachidonic (ARA, 20:4 n-6) and eicosapentaenoic (EPA, 20:5 n-3) acids. Fatty acid profiles were highly variable between and within algal groups; red and brown seaweeds were generally richer in LC-PUFA (e.g. 20:4 n-6 and 20:5 n-3), while high levels of saturated fatty acids such as palmitic acid (16:0) were observed in green species. Most omega-3 PUFA-rich species investigated had a omega-6/omega-3 fatty acid ratio close to 1, which is favourable for human health. The two seasonal sampling times revealed significant differences in total fatty acid and 20:5 n-3 (EPA) contents, with changes depending on species, thus implying varying suitability as potential target species for EPA production. At both times of the year, Palmaria palmata was identified as most promising species as a source of 20:5 n-3 (EPA) amongst all species investigated, with levels ranging from 0.44 to 0.58 % of dry weight in June and November, respectively.  相似文献   

16.
Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the ω-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of ω-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.  相似文献   

17.
The composition of fatty acids and contents of eicosapentaenoic acid (EPA) and polyunsaturated fatty acids (PUFAs) of the economically important marine diatom, Phaeodactylum tricornutum (Bohlin), were investigated to see whether reducing the culture temperature enhances the production of EPA and PUFAs. The contents of EPA and PUFAs of P. tricornutum were found to be higher at lower temperature when cultured at 10, 15, 20, or 25°C. When the cells grown at 25°C were shifted to 20, 15, or 10°C, the contents per dry mass of PUFAs and EPA increased to the maximal values in 48, 24, and 12 h, respectively. The highest yields of PUFAs and EPA per unit dry mass (per unit volume of culture) were 4.9% and 2.6% (12.4 and 6.6 mg·L?1), respectively, when temperature was shifted from 25 to 10°C for 12 h, both being raised by 120% compared with the control. The representative fatty acids in the total fatty acids, when temperature was lowered from 25 to 10°C, decreased proportionally by about 30% in C16:0 and 20% in C16:1(n?7) but increased about 85% in EPA. It was concluded that lowering culture temperature of P. tricornutum could significantly raise the yields of EPA and PUFAs.  相似文献   

18.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35?±?0.5 mg g?1 cell dry weight) and EPA (0.12?±?0.04 mg g?1 cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.  相似文献   

19.
The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L−1 of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel.  相似文献   

20.
Previous studies suggest that the n-3 polyunsaturated fatty acids (PUFAs) eicosapenteinoic acid (EPA) and docosahexaenoic acid (DHA), constituents of fish oil, exert chemopreventive activity in colon cancer. One of the mechanisms involved is the facilitation of apoptosis. While a pro-apoptotic potential of n-3 PUFAs has been suggested, it is still unclear whether additional consumption of fish will also lead to comparable results. The aim of this study was to assess EPA- and DHA-mediated effects on endpoints of apoptosis and to use a novel biomarker-approach to measure modulation of apoptosis by consumption of fish. LT97 human colon adenoma and HT29 human colon adenocarcinoma cells were used to investigate modulation of apoptosis by EPA, DHA or linoleic acid (LA) using a set of endpoints, namely phosphatidylserine staining with Annexin-V (flow cytometry), Bcl-2 expression (Real-time RT–PCR), and Bid, caspase 3, 8 and 9 expression as well as PARP cleavage (Western Blot). Furthermore, faecal water (FW) of volunteers (n = 89) from a human trial intervening with fish was used to investigate changes in apoptosis by flow cytometry. DHA was more effective at inducing apoptosis than EPA. LT97 cells were more prone to DHA and EPA induced apoptosis than HT29 cells. Treatment of LT97 cells with FW from volunteers consuming fish did not result in any changes in apoptosis. Taken together, our results show that adenoma cells are highly susceptible to n-3 PUFA-induced apoptosis. By using a biomarker-approach (FW) to measure apoptosis-induction ex vivo no change in apoptosis after additional fish consumption was detectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号