首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

2.
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m?2 s?1) or high light (HL, 875–1000 µmol photons m?2 s?1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin?+?Antheraxantin?+?Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.  相似文献   

3.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

4.
The effect of composted municipal solid waste (MSW) and sewage sludge (SS) on photosynthetic activity of wheat (Triticum durum L.) was investigated. Chlorophyll fluorescence and gas exchange parameters were assessed following application of up to 300 t ha?1 of MSW compost or SS. 100 t ha?1 MSW compost was optimal for the plant growth, which showed 78% stimulation as compared to the control. This was associated with higher maximum quantum efficiency (F v /F m) of photosystem II (PSII) and the actual quantum efficiency of PSII open centers at light adapted state (ΔF/\(F_{\rm m}^{\prime}\)). Maximal values of net photosynthetic rate and stomatal conductance were recorded at 100 t ha?1 MSW compost (+40 and +116%, respectively). Ribulose bisphosphate carboxylase/oxygenase (RubisCO) activity was also significantly stimulated at 100 t ha?1, while less significant impact was found in SS treatment. A marked accumulation of Ni, Pb, Cu, and Zn in concomitance with membrane lipid peroxidation were observed at 200–300 t ha?1 MSW compost and SS, resulting in lower photosynthetic activity and altered PSII functional integrity. Altogether, these results suggest that the MSW compost at 100 t ha?1 would be suitable for wheat cultivation, within the critical limits of heavy metal accumulation. However, long-term field experiments seem necessary to more accurately evaluate the safety of MSW application.  相似文献   

5.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

6.
Ozone (O3) pollution and the availability of nitrogen (N) and phosphorus (P) in the soil both affect plant photosynthesis and chlorophyll (Chl) content, but the interaction of O3 and nutrition is unclear. We postulated that the nutritional condition changes plant photosynthetic responses to O3. An O3-sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha??1; N80, 80 kg N ha??1), two P levels (P0, 0 kg P ha??1; P80, 80 kg P ha??1) and three levels of O3 exposure (ambient concentration, AA; 1.5?×?AA; 2.0?×?AA) over a growing season in an O3 free air controlled exposure (FACE) facility. The daily change of leaf gas exchange and dark respiration (Rd) were investigated at mid-summer (August). Chl a fluorescence was measured three times in July, August and September. At the end of the growing season, Chl content was measured. It was found that Chl content, the maximum quantum yield (Fv/Fm), Chl a fluorescence performance index (PI) and gas exchange were negatively affected by elevated O3. Phosphorus may mitigate the O3-induced reduction of the ratio of photosynthesis to stomatal conductance, while it exacerbated the O3-induced loss of Fv/Fm. Nitrogen alleviated negative effects of O3 on Fv/Fm and PI in July. Ozone-induced loss of net photosynthetic rate was mitigated by N in medium O3 exposure (1.5?×?AA). However, such a mitigation effect was not observed in the higher O3 level (2.0?×?AA). Nitrogen addition exacerbated O3-induced increase of Rd suggesting an increased respiratory carbon loss in the presence of O3 and N. This may result in a further reduction of the net carbon gain for poplars exposed to O3.  相似文献   

7.
Defoliation occurs in castor due to several reasons, but the crop has propensity to compensate for the seed yield. Photosynthetic efficiency in terms of functional (gas exchange and chlorophyll fluorescence) and structural characteristics (photosynthetic pigment profiles and anatomical properties) of castor capsule walls under light- and dark-adapted conditions was compared with that of leaves. Capsule wall showed high intrinsic efficiency of photosystem II (F v/F m, 0.82) which was comparable to leaves (F v/F m, 0.80). With increasing photon flux densities (PFD), actual quantum yields and photochemical quenching coefficients of the capsule walls were similar to that in leaves, while electron transport rates reached a maximum corresponding to about 118 % of the leaves. However, maximum net photosynthetic rate of the capsule walls (2.60 µmol CO2 m?2 s?1) was less than one-fourth of the leaves (15.67 µmol CO2 m?2 s?1) at the CO2 concentration of 400 µmol mol?1, and the difference was attributed to about 80 % lower stomatal density and the 75 % lower total chlorophyll content of capsule walls than the leaves. Furthermore, seed weight in dark-adapted capsules was 2.70–12.42 % less as compared to the capsules developed under light. The results indicate that castor capsule walls are photosynthetically active (about 15–30 % of the leaves) and contribute significantly to carbon fixation and seed yield accounting for 10 % photoassimilates towards seed weight.  相似文献   

8.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

9.
Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha?1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha?1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.  相似文献   

10.

Key message

The black locust is adapted to elevated [CO 2 ] through changes in nitrogen allocation characteristics in leaves.

Abstract

The black locust (Robinia pseudoacacia L.) is an invasive woody legume within Japan. This prolific species has a high photosynthetic rate and growth rate, and undergoes symbiosis with N2-fixing micro-organisms. To determine the effect of elevated CO2 concentration [CO2] on its photosynthetic characteristics, we studied the chlorophyll (Chl) and leaf nitrogen (N) content, and the leaf structure and N allocation patterns in the leaves and acetylene reduction activity after four growing seasons, in R. pseudoacacia. Our specimens were grown at ambient [CO2] (370 μmol mol?1) and at elevated [CO2] (500 μmol mol?1), using a free air CO2 enrichment (FACE) system. Net photosynthetic rate at growth [CO2] (A growth) and acetylene reduction activity were significantly higher, but maximum carboxylation rate of RuBisCo (V cmax), maximum rate of electron transport driving RUBP regeneration (J max), net photosynthetic rate under enhanced CO2 concentration and light saturation (A max), the N concentration in leaf, and in leaf mass per unit area (LMA) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) content were significantly lower grown at elevated [CO2] than at ambient [CO2]. We also found that RuBisCo/N were less at elevated [CO2], whereas Chl/N increased significantly. Allocation characteristics from N in leaves to photosynthetic proteins, NL (Light-harvesting complex: LHC, photosystem I and II: PSI and PSII) and other proteins also changed. When R. pseudoacacia was grown at elevated [CO2], the N allocation to RuBisCo (NR) decreased to a greater extent but NL and N remaining increased relative to specimens grown at ambient [CO2]. We suggest that N remobilization from RuBisCo is more efficient than from proteins of electron transport (NE), and from NL. These physiological responses of the black locust are significant as being an adaptation strategy to global environmental changes.
  相似文献   

11.
Tomato (Solanum lycopersicum L.) being a widespread and most commonly consumed vegetable all over the world has an important economic value for its producers and related food industries. It is a serious matter of concern as its production is affected by arsenic present in soil. So, the present study, investigated the toxicity of As(V) on photosynthetic performance along with nitrogen metabolism and its alleviation by exogenous application of nitrate. Plants were grown under natural conditions using soil spiked with 25 mg and 20 mM, As(V) and nitrate, respectively. Our results revealed that plant growth indices, photosynthetic pigments, and other major photosynthetic parameters like net photosynthetic rate and maximum quantum efficiency (F v /F m ) of photosystem II (PSII) were significantly (P ≤ 0.05) reduced under As(V) stress. However, nitrate application significantly (P ≤ 0.05) alleviated As(V) toxicity by improving the aforesaid plant responses and also restored the abnormal shape of guard cells. Nitrogen metabolism was assessed by studying the key nitrogen-metabolic enzymes. Exogenous nitrate revamped nitrogen metabolism through a major impact on activities of NR, NiR, GS and GOGAT enzymes and also enhanced the total nitrogen and NO content while malondialdehyde content, and membrane electrolytic leakage were remarkably reduced. Our study suggested that exogenous nitrate application could be considered as a cost effective approach in ameliorating As(V) toxicity.  相似文献   

12.
Oils, carbohydrates, and fats generated by microalgae are being refined in an effort to produce biofuels. The research presented here examines two marine microalgae, Nannochloropsis salina (green alga) and Phaeodactylum tricornutum (diatom), when grown with 0 (no addition), 0.5, 1.0, 2.0, and 5.0 g L?1 NaHCO3 added to an f/2 medium during the growth phase (GP) and a nutrient induced (nitrate limitation) lipid formation phase (LP). We hypothesize that the addition of NaHCO3 is a sustainable and practical strategy to increase cellular density and concentrations of lipids in microalgae as well as the rate of lipid accumulation. In N. salina, final cell densities were significantly (p?<?0.05) higher in the NaHCO3-treated cells than the control while in P. tricornutum the cell densities were higher with >[NaHCO3] during the GP. During the LP, cell densities were generally higher in the NaHCO3-treated cells compared with controls. F V/F M (efficiency of photosystem II) patterns paralleled those for cell density with generally higher values with higher concentrations of NaHCO3 and significantly different values between controls and 5.0 g L?1 NaHCO3 at the end of the GP (p?<?0.05). F V/F M was variable between treatments in P. tricornutum (0.3–0.65) but less so in N. salina for (0.5–0.7) regardless of [NaHCO3]. The lipid index (measured with Nile red), used as a proxy for triacylglycerides (TAGs), was 10.2?±?6.5 and 4.4?±?2.9 (fluorescence units/OD cells ×1000) for N. salina and P. tricornutum, respectively, at the end of the GP. At the end of the LP, the lipid index was eight and four times higher than during the GP in the corresponding 5.0 g L?1 NaHCO3 treatments, revealing that N. salina was accumulating more lipid than P. tricornutum. Dry weights essentially doubled during LP compared with GP for N. salina; this was not the case for P. tricornutum. In general, the percentage of ash in dry weights was significantly higher in the LP relative to the corresponding GP treatments for P. tricornutum; this was not the case for N. salina. During the LP, there was also less soluble protein in N. salina compared to GP; differences were not significant in cells growing with 2.0 or 5.0 g L?1 NaHCO3. In P. tricornutum, faster growing cells had more soluble protein during the GP and LP; differences between treatments were significant. P. tricornutum generally accumulated significantly more crude protein than N. salina at higher [NaHCO3]; there was three times more crude protein in the highest NaHCO3 (5.0 g L?1) treatment compared with the controls. C:N ratios (mol:mol) were similar across treatments during GP: 7.03?±?0.12 and 10.16?±?0.41 for N. salina and P. tricornutum, respectively. Further, C:N ratios increased with increasing [NaHCO3] during LP. Species-specific fatty acid methyl ester (FAMEs) profiles were observed. While C16:0 was lower in P. tricornutum compared to N. salina, the diatom produced more C16:1 and C14 but not C18:3. Monounsaturated fatty acids (MUFA) significantly increased in N. salina in the LP compared to GP and in response to increasing [NaHCO3] (t tests; p?<?0.05). Saturated fatty acids (SFA) responded similarly but to a lesser degree. There were more polyunsaturated fatty acids (PUFA) in N. salina than MUFAs or SFAs. In P. tricornutum, there were generally more SFAs, MUFAs and PUFAs in P. tricornutum during LP than GP in the corresponding NaHCO3 treatments. These findings reveal the importance of considering NaHCO3 as a supplemental carbon source in the culturing marine phytoplankton in large-scale production for biofuels.  相似文献   

13.
Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min?1; while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h?1. The highest cell concentration was obtained as 44 g L?1 at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L?1 and 126 U g?1 cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s?1 and OUR = 8.91 mmol m?3 s?1, respectively.  相似文献   

14.
One of the abiotic stress factors affecting plant metabolism is ultraviolet-B (UV-B) radiation. 5-Aminolevulinic acid (ALA), a key precursor of porphyrin biosynthesis, promotes plant growth and crop yields. To investigate the alleviating effects of exogenous ALA on the damages caused by UV-B exposure, two different concentrations [10 ppm (ALA1) and 25 ppm (ALA2)] of ALA were applied to lettuce seedlings for 24 h and then they were exposed to 3.3 W m?2 UV-B. Results showed that UV-B treatment significantly decreased chlorophyll a and b (Chl a and b) concentration, enhanced the activity of antioxidant enzymes, total phenolic concentration, soluble sugar contents, expression of phenylalanine ammonia lyase (PAL) and γ-tocopherol methyltransferase (γ-TMT) genes, the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the rate of superoxide radical (\({\text{O}}_{2}^{ - }\)) generation in the lettuce seedlings when compared to the control. Pre-treatment with exogenous ALA significantly enhanced UV-B stress tolerance in lettuce seedlings by decreasing the reactive oxygen species. On the other hand, ALA application caused more increases in the PAL and γ-TMT gene expression, antioxidant enzymes activities, Chl a and b concentration, total phenolic content, antioxidant capacity and the concentrations of soluble sugars. Obtained results indicated that UV-B radiation exerts an adverse effect on lettuce seedlings, and some of the negative effects of UV-B radiation can be alleviated by exogenous ALA.  相似文献   

15.
We have previously investigated the response mechanisms of photosystem II complexes from spinach to strong UV and visible irradiations (Wei et al J Photochem Photobiol B 104:118–125, 2011). In this work, we extend our study to the effects of strong light on the unusual cyanobacterium Acaryochloris marina, which is able to use chlorophyll d (Chl d) to harvest solar energy at a longer wavelength (740 nm). We found that ultraviolet (UV) or high level of visible and near-far red light is harmful to A. marina. Treatment with strong white light (1,200 μmol quanta m?2 s?1) caused a parallel decrease in PSII oxygen evolution of intact cells and in extracted pigments Chl d, zeaxanthin, and α-carotene analyzed by high-performance liquid chromatography, with severe loss after 6 h. When cells were irradiated with 700 nm of light (100 μmol quanta m?2 s?1) there was also bleaching of Chl d and loss of photosynthetic activity. Interestingly, UVB radiation (138 μmol quanta m?2 s?1) caused a loss of photosynthetic activity without reduction in Chl d. Excess absorption of light by Chl d (visible or 700 nm) causes a reduction in photosynthesis and loss of pigments in light harvesting and photoprotection, likely by photoinhibition and inactivation of photosystem II, while inhibition of photosynthesis by UVB radiation may occur by release of Mn ion(s) in Mn4CaO5 center in photosystem II.  相似文献   

16.
The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.  相似文献   

17.
Cytokinins are a class of plant growth regulators that regulate several developmental processes in plants, and recently their role in counteracting the deleterious effects of abiotic stresses has been noted. The impacts of kinetin (10 µM, KN; an artificial cytokinin) on growth, photosystem II photochemistry, and nitrogen metabolism in tomato seedlings exposed to two levels (UV-B1, ambient+?1.2 kJ m?2 day?1, and UV-B2, ambient+?2.4 kJ m?2 day?1) of enhanced UV-B radiation were analyzed under open field condition. The growth, pigment contents, carbonic anhydrase activity, photosynthetic O2 yield, and values of chlorophyll a fluorescence parameters: F v/F 0, F v/F m or φP0, ψ 0, φE 0, and PIABS declined, whereas the values of energy flux parameters (ABS/RC, TR0/RC, ET0/RC, and DI0/RC) of PS II, efficiency of water splitting complex (F 0/F v), and respiratory rate of O2 uptake increased under UV-B stress. Likewise, UV-B exposure at both doses significantly inhibited the activity of enzymes involved in nitrogen metabolism: nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase. In contrast, an enhancing effect on glutamate dehydrogenase activity was observed under UV-B stress. Exogenous KN resulted in a significant attenuation in UV-B-induced negative effects on growth, pigments, photosynthesis, and nitrogen metabolism. The study concludes that exogenous KN improved the growth performance of tomato seedlings by attenuating the damaging effects of UV-B radiation on photochemistry of PS II and nitrogen metabolism, and the alleviating effect against the low dose (UV-B1) of UV-B was more pronounced.  相似文献   

18.
We investigate the carbon dynamics in Guanabara Bay, an eutrophic tropical coastal embayment surrounded by the megacity of Rio de Janeiro (southeast coast of Brazil). Nine sampling campaigns were conducted for dissolved, particulate and total organic carbon (DOC, POC and TOC), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), chlorophyll a (Chl a), pheo-pigments and ancillary parameters. Highest DOC, POC and Chl a concentrations were found in confined-shallow regions of the bay during the summer period with strong pCO2 undersaturation, and DOC reached 82 mg L?1, POC 152 mg L?1, and Chl a 800 μg L?1. Spatially and temporally, POC and DOC concentrations varied positively with total pigments, and negatively with DIC. Strong linear correlations between these parameters indicate that the production of TOC translates to an equivalent uptake in DIC, with 85% of the POC and about 50% of the DOC being of phytoplanktonic origin. Despite the shallow depths of the bay, surface waters were enriched in POC and DOC relative to bottom waters in periods of high thermohaline stratification. The seasonal accumulation of phytoplankton-derived TOC in the surface waters reached about 105 g C m?2 year?1, representing between 8 and 40% of the net primary production. The calculated turnover time of organic carbon was 117 and 34 days during winter and summer, respectively. Our results indicate that eutrophication of coastal bays in the tropics can generate large stocks of planktonic biomass and detrital organic carbon which are permanently being produced and partially degraded and buried in sediments.  相似文献   

19.
Improvement of photosynthetic traits is a promising strategy to break the yield potential barrier of major food crops. Leaf photosynthetic traits were evaluated in a set of high yielding Oryza sativa, cv. Swarna?×?Oryza nivara backcross introgression lines (BILs) along with recurrent parent Swarna, both in wet (Kharif) and dry (Rabi) seasons in normal irrigated field conditions. Net photosynthesis (PN) ranged from 15.37 to 23.25 µmol (CO2) m?2 s?1 in the BILs. Significant difference in PN was observed across the seasons and genotypes. Six BILs showed high photosynthesis compared with recurrent parent in both seasons. Chlorophyll content showed minimum variation across the seasons for any specific BIL but significant variation was observed among BILs. Significant positive association between photosynthetic traits and yield traits was observed, but this association was not consistent across seasons mainly due to contrasting weather parameters in both seasons. BILs 166s and 248s with high and consistent photosynthetic rate exhibited stable high yield levels in both the seasons compared to the recurrent parent Swarna. There is scope to exploit photosynthetic efficiency of wild and weedy rice to identify genes for improvement of photosynthetic rate in cultivars.  相似文献   

20.
Microalgae have been proposed as eco-friendly feedstocks for biodiesel production, because they accumulate large amounts of lipids and increase their biomass through photosynthesis. However, the photosynthetic efficiency of microalgae is too low for this strategy to be economically feasible. In an effort to overcome this issue, random mutants with reduced chlorophyll antenna size were generated by ethyl methanesulfonate (EMS)-mediated mutagenesis of Chlorella vulgaris. The antenna size mutant, herein designated E5, exhibited 56.5 and 75.8 % decreases in chlorophyll a and b contents, respectively, with significant reductions in the expression levels of peripheral light-harvesting antenna proteins in photosystem II. The saturated photosynthetic activity and electron transport rate of the E5 mutant were significantly higher and also showed reduced non-photochemical quenching (NPQ), compared to those of the wild type. Consequentially, the E5 mutant cultures achieved 44.5 % improvement in biomass productivity under high light (200 μmol photons m?2 s?1). These results suggest that improving the photosynthetic efficiency of microalgae could greatly enhance their biomass production, and such mutant strains can be applicable for large-scale outdoor cultivation which is typically exposed to high light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号