首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), long considered a traditional glycolytic protein, displays multiple activities independent of its role in energy generation. This functional diversity is dependent on its membrane, cytoplasmic or nuclear localization. GAPDH is encoded by one active gene and is synthesized as a single 37 kDa protein without alternate splicing. Accordingly, the identical protein would be present in each subcellular fraction. The accumulation of post-translational errors in protein structure as a function of oxidative stress is thought to provide a basic molecular mechanism for the aging process. Thus, during aging, the GAPDH protein should contain the identical degree of oxidative sequence alteration irrespective of its distribution. This would result in equivalent effects on GAPDH activity. However, conformational differences in GAPDH structure due to its subcellular protein, nucleic acid or membrane interactions could affect its degree of modification thereby selectively affecting its function. For that reason, we examined the subcellular expression and intracellular activity of GAPDH as a function of human aging. Subcellular GAPDH expression was quantitated by immunoblot analysis in fetal and senior human cells (postnuclear, nuclear, perinuclear). GAPDH activity was determined by in vitro assay. We now report that the aging of human GAPDH was subcellular dependent. Reductions of nuclear and postnuclear GAPDH activity in senior cells were twofold lower than that observed for the perinuclear protein. In contrast, the subcellular expression of the GAPDH protein was age-independent. These results suggest the possibility that subcellular interactions may mitigate oxidative stress-induced GAPDH modification in human aging. Such selective effects on GAPDH could affect its functional diversity.  相似文献   

2.
3.
4.
Glyceraldehyde-3-phosphate dehydrogenase (d-glyceraldehyde-3-phosphate:nicotinamide adenine dinucleotide oxidoreductase (phosphorylating), EC 1.2.1.12), isolated from rat skeletal muscle undergoes a rapid inactivation upon incubation at 25 °C in the presence of adenine nucleotides. The reaction can be described as a reversible tetramerdimer equilibrium, only the tetrameric form of the enzyme being active in the presence of nucleotides. The standard free energy changes upon dissociation at 25 °C in 0.1 m phosphate buffer pH 7.5 in the presence of saturating concentrations of ATP, ADP, AMP, and ADP-ribose were found to be 6.69, 6.93, 8.31, and 10.5 kcal/mol, respectively. Nucleotide-dependent inactivation does not bring about any alteration of the reactivity of SH groups of the enzyme towards 5,5′-dithiobis(2-nitrobenzoic acid). This is not the case, however, when the enzyme undergoes NaCl-induced cold inactivation, which is accompanied by an increased accessibility of SH groups. ADP and ATP protect the enzyme against cold inactivation in the presence of NaCl and decrease the enhanced reactivity of SH groups. Adenine nucleotide-induced inactivation is prevented in the presence of NAD. The protective effect is noncooperative, the extent of inactivation being dependent upon the amount of active centers free of bound coenzyme. Addition of excess NAD to the inactivated enzyme results in a complete regain of activity. A comparative study made on the rate of reforming enzyme NAD complex (followed spectrophotometrically) and the regain of activity has demonstrated that the former process is markedly more rapid than the latter. The reactivation was observed to follow second-order kinetics, which suggests that the reassociation of the inactive NAD-liganded dimers is the rate-limiting step. The data are consistent with the existence of different conformational transitions responsible for the restoration of the intersubunit contact area, catalytic activity, and thermal stability of the enzyme molecule, respectively.  相似文献   

5.
Glyceraldehyde-3-phosphate dehydrogenase from rat skeletal muscle undergoes reversible partial dissociation into 4.2–4.5 S fragments at +4°C and at protein concentrations as high as 8–9 mg/ml, depending upon the anion species present. The order of effectiveness of various anions in dissociating activity corresponds to their position in the Hofmeister series: bromide > nitrate > chloride > acetate > sulfate > phosphate=citrate. Quite similar is the order of activity of anions in their influence on the thermal stability of the dehydrogenase.  相似文献   

6.
The complete nucleotide sequence for chicken glyceraldehyde-3-phosphate dehydrogenase mRNA has been determined, thereby extending the longest such sequence previously reported (Dugaiczyk et al. Biochemistry, 1983, 22, 1605-1613) by 27 nucleotides. The complete mRNA with the exclusion of poly(A) is 1284 nucleotides long and contains 56 nucleotides of 5' non coding sequence and 229 nucleotides of 3' non coding region. Knowledge of the complete sequence allows us to propose secondary structures models which may be of biological significance.  相似文献   

7.
Tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus has been crystallized as hexagonal plates, P3121, a = b = 64.6 A?, c = 238.8 A?, with the dimeric molecule (molecular weight, 90,000) occupying two crystallographic asymmetric units (Reid et al., 1973). Three heavy-atom derivatives have been identified and X-ray diffraction measurements have been made to 2.7 Å resolution, using the oscillation method. The three heavy-atom derivatives were methyl mercury (two sites, half occupied, 3 Å apart), uranyl acetate (single fully occupied site) and chloroplatinite PtCl42? (three sites of differing occupancy). The results were used to compute an electron density map at 2.7 Å resolution, which shows the monomer as a unit of about 60 Å × 60 Å × 40 Å. The maximum dimension of the dimer is about 130 Å. Most of the polypeptide chain has been traced uniquely. It includes five α-helices more than 12 Å long and several shorter helices. A six-stranded pleated-sheet structure lies in the centre of each subunit. The catalytic site of the enzyme is believed to be adjacent to the mercury-binding group.  相似文献   

8.
Polyclonal antibodies raised against NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase [phosphorylating], EC 1.2.1.12) from the plant cytosolic fraction of soybean [ Glycine max (L.) Merr. cv. Williams] nodules were used to study the subcellular location of the enzyme and its relative distribution between infected, interstitial and cortical cells of soybean (cv. Lincoln) nodules. Post-embedding immunogold labelling was carried out on nodules harvested 5, 12, 19 and 25 days after the first sign of nodulation. Labelling for glyceraldehyde-3-phosphate dehydrogenase was observed over the cytoplasm and nuclei of infected and uninfected cells, as well as over the nucleoid regions of bacteroids. In 5-day-old nodules, label also bound adjacent to the peribacteroid membranes. Statistical analysis of the number of gold particles per cell area indicated that in 5-day-old nodules, glyceraldehyde-3-phosphate dehydrogenase was distributed equally between infected, interstitial and cortical cells, but in older nodules the enzyme was more prominent in the interstitial and cortical cells than in infected cells.  相似文献   

9.
Beta-structure in glyceraldehyde-3-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

10.
Chloroplast NADP-linked glyceraldehyde-3-phosphate dehydrogenase was resolved into three forms that differed in molecular weight: (a) larger than or equal to 1.5 million; (b) 600,000; and (c) less than or equal to 100,000. After preincubation with an effector (ATP, NADPH, or Pi) the activity of forms a and c was unaffected, whereas the activity of b, the regulatory form, was increased 10-fold. Activation was accompanied by the exposure of previously hidden sulfhydryl groups. The rate of activation was slower than the rate of catalysis and resulted in a lag phase during the measurement of activity when the enzyme was preincubated in the absence of an effector. The addition of one of several compounds as a second effector (at a concentration which itself was nonactivating) in the presence of a first effector enhanced activation by lowering the concentration of the first effector required for half-maximal activation (Pi constant/ATP or NADPH varied; ATP or NADPH constant/Pi varied). Other combinations of effectors caused little change in activity (ATP constant/NADPH varied; NADPH constant/ATP varied). Glyceraldehyde 3-phosphate added as a second effector induced contrasting changes: an increase in the ATP-mediated activation and a decrease in the NADPH-mediated activation. The results are consistent with the view that the products of the photochemical reactions of chloroplasts, ATP, and NADPH, in conjunction with other metabolites, regulate the activity of glyceraldehyde-3-phosphate dehydrogenase in the photosynthetic assimilation of CO2.  相似文献   

11.
1. Glyceraldehyde-3-phosphate dehydrogenase was isolated from the ordinary muscle of red sea bream Pagrus major, Pacific mackerel Scomber japonicus and carp Cyprinus carpio by ammonium sulfate fractionation, followed by DEAE-Sepharose CL-6B and DEAE-cellulose column chromatography and Sephadex G-150 gel filtration, and examined for enzymatic properties. 2. Their optimum pH values in the backward reaction ranged from 7.8 to 8.2, and Km values from 1.56 to 1.90 mM. 3. Irrespective of the species of fish, the enzymatic activity was non-competitively inhibited by inorganic phosphate in the backward reaction. Divalent metal ions were not necessary to activate these glyceraldehyde-3-phosphate dehydrogenases. In the presence of 1 mM Zn(2+), these enzymes showed relative activities of 42-64% the activities measured in the absence of those ions. 5. Thermal stability of carp enzyme was higher than those of red sea bream and Pacific mackerel; the enzyme activity of the latter two species was almost lost on incubation at 45 degrees C for 10-20 min, whereas carp enzyme retained half the activity even when incubated at 60 degrees C for 30 min.  相似文献   

12.
Initial rate studies at pH 7.6 with three aldehydes, product inhibition patterns with NADH and dead-end inhibition with adenosine diphosphoribose show that the kinetic mechanism of glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle cannot be ordered, and support an enzyme-substitution mechanism. Deviations from Michaelis-Menten behaviour are consistent with negative interactions in the binding of NAD+ and instability of the species E(NAD)3 and E(NAD)4. Inhibition with large concentrations of phosphate and arsenate indicates competition for a binding site for glyceraldehyde 3-phosphate, and is not found with glyceraldehyde as substrate.  相似文献   

13.
14.
15.
Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that catalyses conversion of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. ATP has been found to have an inhibitory effect on this enzyme. To establish the interaction between the enzyme and ATP, a fluorescence technique was used. Fluorescence quenching in the presence of ATP suggests cooperative binding of ATP to the enzyme (the Hill obtained coefficient equals 2.78). The interaction between glyceraldehyde-3-phosphate dehydrogenase and ATP may control not only glycolysis but other activities of this enzyme, such as binding to the cytoskeleton.  相似文献   

16.
These studies establish the specificity of 3,3,3-trifluorobromoacetone for reaction with the active site cysteines of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase and suggest the potential use of trifluoroacetonyl groups as 19F nuclear magnetic resonance probes for study of symmetry relations between the four protomers of the enzyme. The alkylation of the holoenzyme follows biphasic kinetics and indicates either preexistent or induced nonequivalence among the sites; these effects are not predisposed by a low coenzyme/enzyme ratio. Two additional alkylation sites not at the active centers are created by acylation with beta-(2-furyl)acryloyl phosphate: it is concluded that pseudosubstrates cause an intramolecular rearrangement which exposes two sulfhydryl functions besides those of the active site (Cys-149).  相似文献   

17.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

18.
ApoGPDH is shown to exhibit half-of-the-sites reactivity towards iodeacetamido-naphthal (IAN) and FDNB and all-of-the-sites reactivity towards DTNB, iodoactic acid and the large DDPM molecule. It is suggested that the asymmetry in the ApoGPDH molecule is induced by some alkylating reagents and not by others, depending on the nature of the interaction between the alkyl group and the active site of the enzyme.  相似文献   

19.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号