首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most bacteriophages abruptly terminate their vegetative cycle by causing lysis of the host cell. The ssDNA phage phi X174 uses a single lysis gene, E, encoding a 91-amino-acid membrane protein that causes lysis of Escherichia coli by inhibiting MraY, a conserved enzyme of murein biosynthesis. Recessive mutations in the host gene slyD (sensitivity to lysis) absolutely block E-mediated lysis and phi X174 plaque formation. The slyD gene encodes a FKBP-type peptidyl-prolyl cis-trans isomerase (PPIase). To investigate the molecular basis of this unique FKBP-dependence, spontaneous plaque-forming mutants of phi X174 were isolated on a slyD lawn. All of these Epos ('plates on slyD') suppressors encode proteins with either a R3H or L19F change. The double mutant was also isolated and generated the largest plaques on the slyD lawn. A c-myc epitope tag sequence was incorporated into the parental E and Epos genes without effect on lytic function. Western blots and pulse-chase labelling experiments showed that both Epos and E are highly unstable in a slyD background; however, Epos is synthesized at a higher rate, allowing a lysis-sufficient level of Epos to accumulate. Our results indicate that SlyD is required for stabilizing the E protein and allowing it to accumulate to the levels required to exert its lytic effect. These data are discussed in terms of a model for the specific role of the SlyD PPIase in E folding, and of the use of the very strict SlyD- dependence phenotype for identifying elements of PPIase selectivity.  相似文献   

2.
Bacteriophage lysis: mechanism and regulation.   总被引:42,自引:0,他引:42       下载免费PDF全文
Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E.  相似文献   

3.
The complete nucleotide sequence of the genome of the circular single-stranded DNA (isometric) phage alpha 3 has been determined and compared with that of the related phages phi X174 and G4. The alpha 3 genome consists of 6087 nucleotides, which is 701 nucleotides longer than the nucleotide sequence of the phi X174 genome and 510 nucleotides more than that of the G4 genome. The results demonstrated that the three phage species have 11 homologous genes (A, A*, B, C, K, D, E, J, F, G and H), the order of which is fundamentally identical, suggesting that they have evolved from a common ancestor. The sequence of some genes and untranslated intergenic regions, however, differs significantly from phage to phage: for example, the degree of amino acid sequence homology of the gene product is averaged at 47.7% between alpha 3 and phi X174 and 46.9% between alpha 3 and G4, and alpha 3 has a remarkable longer intergenic region composed of 758 nucleotides between the genes H and A compared with the counterparts of phi X174 and G4. Meanwhile, in vivo experiments of genetic complementation showed that alpha 3 can use none of the gene products of phi X174 and G4, whereas the related phage phi K can rescue alpha 3 nonsense mutants of the genes B, C, D and J. These sequencing and in vivo rescue results indicated that alpha 3 is closely related to phi K, but distantly remote from phi X174 or G4, and supported an evolutional hypothesis which has been so far proposed that the isometric phages are classified into three main groups: the generic representatives are phi X174, G4 and alpha 3.  相似文献   

4.
The objective of our work with phi X174 has been to develop a shuttle vector that can be used comparatively in bacterial cells, different types of mammalian cells, and possibly in the various tissues of transgenic mice, with a constant mechanism for detection and analysis of mutations independent of any host-cell type. Toward that end, we have efficiently rescued phi X174 am3 cs70 that is host-silent and stably integrated into the genome of mouse L-cells. The particular mouse L-cell line contains tandem arrays, single copies, and fragments of phi X that, upon restriction enzyme excision, can result in 5 potentially active copies per diploid genome. The excised phi X DNA is recovered by column chromatography, ligated, and transfected into highly competent spheroplasts. The Rescue Efficiency, defined as the number of viable phages produced out of the total number of potentially recoverable copies, is approx. 10(-3). The Recovery Ratio, defined as the Rescue Efficiency for chromosomally-integrated phage DNA divided by the Rescue Efficiency for phi X am3 cs70, is close to one. Mouse L-cells containing the integrated phi X174 am3 cs70 were treated with 20 mM ethyl methanesulfonate. The reversion frequency of am3 among progeny phages rescued from treated cells was 1.4 X 10(-5) (193 revertants in 1.4 X 10(7) phages). This is significantly higher than the 5.8 X 10(-7) reversion frequency of am3 (7 revertants in 1.2 X 10(7) phages) among progeny phages rescued from untreated cells.  相似文献   

5.
Gene A protein, a bacteriophage phi X174-encoded endonuclease involved in phi X replicative form (RF) DNA replication, nicks not only phi X RFI DNA but also RFI DNAs of several other spherical single-stranded DNA bacteriophages. The position of the phi X gene A protein nick and the nucleotide sequence surrounding this site in RF DNAs of the bacteriophages U3, G14, and alpha 3 were determined. Comparison of the nucleotide sequences which surround the nick site of the gene A protein in RF DNAs of phi X174, G4, St-1, U3, G14, and alpha 3 revealed that a strongly conserved 30-nucleotide stretch occurred in RF DNAs of all six phages. However, perfect DNA sequence homology around this site was only 10 nucleotides, the decamer sequence CAACTTGATA. The present results support the hypothesis that, for nicking of double-stranded supercoiled DNA by the phi X gene A protein, the presence of the recognition sequence CAACTTGATA and a specific gene A protein binding sequence upstream from the recognition sequence are required. The sequence data obtained so far from phages U3, G14, St-1, and alpha 3 have been compared with the nucleotide sequences and amino acid sequences of both phi X and G4. According to this comparison, the evolutionary relationship between phages G4, U3, and G14 is very close, which also holds for phages alpha 3 and St-1. However, the two groups are only distantly related, both to each other and to phi X.  相似文献   

6.
The host-lysis-inducing functions of phi X174 protein E and MS2 protein L were recently shown to reside on the N-terminal and C-terminal halves of the two respective lysis proteins. In the present study it is shown that the small lysis proteins encoded in various colicinogenic plasmids share local sequence similarities and certain structural characteristics with the essential peptides of their coliphage-coded counterparts. Despite their dissimilar sizes and origins, it is suggested that the colicinogenic lysis proteins are functionally analogous and evolutionarily related to those of icosahedral single- stranded DNA and RNA phages.   相似文献   

7.
Escherichia coli VC30 is a temperature-sensitive mutant which is defective in autolysis. Strain VC30 lyses at 30 degrees C when treated with beta-lactam antibiotics or D-cycloserine or when deprived of diaminiopimelic acid. The same treatments inhibit growth of the mutant at 42 degrees C but do not cause lysis. Strain VC30 was used here to investigate the mechanism of host cell lysis induced by bacteriophage phi X 174. Strain VC30 was transformed with plasmid pUH12, which carries the cloned lysis gene (gene E) of phage phi X174 under the control of the lac operator-promoter, and with plasmid pMC7, which encodes the lac repressor to keep the E gene silent. Infection of strain VC30(pUH12)(pMC7) with phage phi X174 culminated in lysis at 30 degrees C. At 42 degrees C, intracellular phage development was normal, but lysis did not occur unless a temperature downshift to 30 degrees C was imposed. Similarly, induction of the cloned phi X174 gene E with isopropyl-beta-D-thiogalactoside resulted in lysis at 30 degrees C but not at 42 degrees C. Temperature downshift of the induced culture to 30 degrees C resulted in lysis even in the presence of chloramphenicol. These results indicate that host cell lysis by phage phi X174 is dependent on a functional cellular autolytic enzyme system.  相似文献   

8.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

9.
A temperature shock, a change in the pH of the medium for conservation within the range of 4.0 to 10.0, and an increase of NaCl concentration up to 5 M do not inactivate Escherichia coli phages T3, T4 and phi X174. The hydrostatic pressure of 2 X 10(3) atm inactivates phages T4 and phi X174. The sensitivity of the phages to the pressure correlates with their survival rate after freezing.  相似文献   

10.
Features of inactivation, repair and concomitant mutagenesis of hydroxylamine-treated phi X174 bacteriophages are reported here. (1) For reasons unknown, the nonsense phage mutants tested here were far more sensitive to hydroxylamine than the wild-type phage. In contrast, the sensitivities of these same phi X174 mutants to UV-irradiation are indistinguishable. (2) Hydroxylamine-treated amber phages mutated to ochre but not to wild-type particles, i.e., G leads to A transition events were recovered. (3) The repair of phi X174 phages from hydroxylamine-induced damage was error-prone, but unlike UV damage, did not require protein synthesis de novo. Possible mechanisms of these novel features are discussed.  相似文献   

11.
Possible finger structure in gene A protein of Microviridae   总被引:1,自引:0,他引:1  
Microvirid phages alpha 3 and phi K encode for A protein which functions in initiation of the viral DNA synthesis. By nucleotide sequencing analysis, we have found that each gene A protein has 'finger motif structure' which conserves two cysteine and histidine residues similar to the consensus sequence deduced from more than thirty finger motifs reported from many eukaryotic regulatory proteins. In closely related phages, phi X174 and G4, we have detected the same structures in their gene A proteins also.  相似文献   

12.
Recombination of bacteriophage phi X174 was effectively promoted when the Red function of lambda was supplied by either co-infection with lambda or induction of lambda lysogens. Mutations in red alpha and red beta genes of lambda abolished recombination nearly completely, whereas a mutation in gam gene reduced it only slightly. The Red-promoted recombination of phi X174 occurred in recA, recB, and polA mutants as well as in wild-type strains of Escherichia coli. It was further stimulated when phi X174 mutants were irradiated with UV light before infection.  相似文献   

13.
Genes and regulatory sequences of bacteriophage phi X174   总被引:3,自引:0,他引:3  
Fragments of the DNA of bacteriophage phi X174 were inserted in the plasmids pACYC177 and pBR322, in order to test the in vivo effects of separate phage genes and regulatory sequences. The phi X174 inserts were identified by recombination and complementation with phage mutants, followed by restriction enzyme analysis. The genes B, C, F and G can be maintained stably in the cell even when there is efficient expression of these viral genes. Recombinant plasmids with the complete genes D and E can only be maintained when the expression of these genes is completely blocked. Expression of complete H and J genes could not yet be demonstrated. The intact gene A was apparently lethal for the host cell, as it was never found in the recombinants. The genes F and G are expressed, even when they are not preceded by one of the well characterized viral or plasmid promoter sequences. Screening of the nucleotide sequence of phi X174 gives two promoter-like sequences just in front of the two genes. Viral sequences with replication signals (the phi X174 (+) origin of replication, the initiation site for complementary strand synthesis and the incompatibility sequence) appeared to be functional also when inserted in recombinant plasmids. A plasmid with the phi X (+) origin can be forced to a rolling circle mode of replication. The A protein produced by infecting phages works in trans on the cloned viral origin. The (-) origin can function as initiation signal for complementary strand synthesis during transduction of single-stranded plasmid DNA. The intracellular presence of the incompatibility sequence on a plasmid prevents propagation of infecting phages.  相似文献   

14.
J G Atherton 《Gene》1979,6(4):367-376
Double infection of Escherichia coli by two DNA phages (phi X174 and T5) resulted in encapsidation into T5 particles of T5 DNA containing linked fragments of phi X174 DNA. The phi X474 sequences in T5 "hybrid" DNA were detected by RNA-DNA hybridization.  相似文献   

15.
The insertion of a particular phi X DNA sequence in the plasmid pACYC177 strongly decreased the capacity of Escherichia coli cells containing such a plasmid to propagate bacteriophage phi X174. The smallest DNA sequence tested that showed the effect was the HindII fragment R4. This fragment does not code for a complete protein. It contains the sequence specifying the C-terminal part of the gene H protein and the N-terminal part of the gene A protein, as well as the noncoding region between these genes. Analysis of cells that contain plasmids with the "reduction sequence" showed that (i) the adsorption of the phages to the host cells is normal, (ii) in a single infection cycle much less phage is formed, (iii) only 10% of the infecting viral single-stranded DNA is converted to double-stranded replicative-form DNA, and (iv) less progeny replicative form DNA is synthesized. The reduction process is phi X174 specific, since the growth of the related G4 and St-1 phages was not affected in these cells. The effect of the recombinant plasmids on infecting phage DNA shows similarity to the process of superinfection exclusion.  相似文献   

16.
U Blsi  R Young    W Lubitz 《Journal of virology》1988,62(11):4362-4364
Gene K of bacteriophage phi X174 was cloned, and its gene product was localized in the cell envelope of Escherichia coli. Compared with the sole expression of the phi X174 lysis gene E, the simultaneous expression of the K and E genes had no effect on scheduling of cell lysis. Therefore, a direct interaction of proteins E and K could be excluded. In contrast, phi X174 infection of a host carrying a plasmid expressing gene K resulted in a delayed lysis and an apparent increase in phage titer.  相似文献   

17.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

18.
Restriction enzymes produced by bacteria serve as a defense against invading bacteriophages, and so phages without other protection would be expected to undergo selection to eliminate recognition sites for these enzymes from their genomes. The observed frequencies of all restriction sites in the genomes of all completely sequenced DNA phages (T7, lambda, phi X174, G4, M13, f1, fd, and IKe) have been compared to expected frequencies derived from trinucleotide frequencies. Attention was focused on 6-base palindromes since they comprise the typical recognition sites for type II restriction enzymes. All of these coliphages, with the exception of lambda and G4, exhibit significant avoidance of the particular sequences that are enterobacterial restriction sites. As expected, the sequenced fraction of the genome of phi 29, a Bacillus subtilis phage, lacks Bacillus restriction sites. By contrast, the RNA phage MS2, several viruses that infect eukaryotes (EBV, adenovirus, papilloma, and SV40), and three mitochondrial genomes (human, mouse, and cow) were found not to lack restriction sites. Because the particular palindromes avoided correspond closely with the recognition sites for host enzymes and because other viruses and small genomes do not show this avoidance, it is concluded that the effect indeed results from natural selection.   相似文献   

19.
The recent electronmicroscopic and biochemical mapping of Z-DNA sites in phi X174, SV40, pBR322 and PM2 DNAs has been used to determine two sets of criteria for identification of potential Z-DNA sequences in natural DNA genomes. The prediction of potential Z-DNA tracts and corresponding statistical analysis of their occurrence have been made on a sample of 14 DNA genomes. Alternating purine and pyrimidine tracts longer than 5 base pairs in length and their clusters (quasi alternating fragments) in the 14 genomes studied are under-represented compared to the expectation from corresponding random sequences. The fragments [d(G X C)]n and [d(C X G)]n (n greater than or equal to 3) in general do not occur in circular DNA genomes and are under-represented in the linear DNAs of phages lambda and T7, whereas in linear genomes of adenoviruses they are strongly over-represented. With minor exceptions, potential Z-DNA sites are also under-represented compared to random sequences. In the 14 genomes studied, predicted Z-DNA tracts occur in non-coding as well as in protein coding regions. The predicted Z-DNA sites in phi X174, SV40, pBR322 and PM2 correspond well with those mapped experimentally. A complete listing together with a compact graphical representation of alternating purine-pyrimidine fragments and their Z-forming potential are presented.  相似文献   

20.
A soluble enzyme system that specifically initiates lambda dv plasmid DNA replication at a bacteriophage lambda replication origin [Wold et al. (1982) Proc. Natl. Acad. Sci. USA 79, 6176-6180] is also capable of replicating the single-stranded circular chromosomes of phages M13 and phi X174 to a duplex form. This chain initiation on single-stranded templates is novel in that it is absolutely dependent on the lambda O and P protein chromosomal initiators and on several Escherichia coli proteins that are known to function in the replication of the lambda chromosome in vivo, including the host dnaB, dnaG (primase), dnaJ and dnaK replication proteins. Strand initiation occurs at multiple sites following an O and P protein-dependent pre-priming step in which the DNA is converted into an activated nucleoprotein complex containing the bacterial dnaB protein. We propose a scheme for the initiation of DNA synthesis on single-stranded templates in this enzyme system that may be relevant to strand initiation events that occur during replication of phage lambda in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号