首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic loci for X-linked retinitis pigmentosa (XLRP) have been mapped between Xp11.22 and Xp22.13 (RP2, RP3, RP6, and RP15). The RP3 gene, which is responsible for the predominant form of XLRP in most Caucasian populations, has been localized to Xp21.1 by linkage analysis and the map positions of chromosomal deletions associated with the disease. Previous linkage studies have suggested that RP3 is flanked by the markers DXS1110 (distal) and OTC (proximal). Patient BB was thought to have RP because of a lesion at the RP3 locus, in addition to chronic granulomatous disease, Duchenne muscular dystrophy (DMD), mild mental retardation, and the McLeod phenotype. This patient carried a deletion extending approximately 3 Mb from DMD in Xp21.3 to Xp21.1, with the proximal breakpoint located approximately 40 kb centromeric to DXS1110. The RP3 gene, therefore, is believed to reside between DXS1110 and the proximal breakpoint of the BB deletion. In order to refine the location of RP3 and to ascertain patients with RP3, we have been analyzing several XLRP families for linkage to Xp markers. Linkage analysis in an American family of 27 individuals demonstrates segregation of XLRP with markers in Xp21.1, consistent with the RP3 subtype. One affected mate shows a recombination event proximal to DXS1110. Additional markers within the DXS1110-OTC interval show that the crossover is between two novel polymorphic markers, DXS8349 and M6, both of which are present in BB DNA and lie centromeric to the proximal breakpoint. This recombination places the XLRP mutation in this family outside the BB deletion and redefines the location of RP3.  相似文献   

2.
Using multipoint linkage analysis in 20 families segregating for X-linked retinitis pigmentosa (XLRP), the lod scores on a map of eight RFLP loci were obtained. Our results indicate that under the hypothesis of homogeneity the maximal multipoint lod score supports one disease locus located slightly distal to OTC at Xp21.1. Heterogeneity testing for two XLRP loci suggested that a second XLRP locus may be located 8.5 cM proximal to DXS28 at Xp21.3. Further heterogeneity testing for three disease loci failed to detect a third XLRP locus proximal to DXS7 in any of our 20 XLRP families.  相似文献   

3.
The microsatellite marker DXS426 maps to the interval Xp21.1-Xp11.21, the chromosomal region which contains two loci for X-linked retinitis pigmentosa (XLRP; RP2 and RP3). We have refined the localization of DXS426 both physically, by mapping it to a deletion which spans the interval Xp21.3-Xp11.23, and genetically, by studying multiply informative crossovers which indicate that DXS426 lies between DXS7 and DXS255 (i.e., Xp11.4-Xp11.22). As this is the region which contains the RP2 gene, RP2 families could be identified on the basis of linkage of XLRP to DXS426. Multiply informative crossovers in two RP2 families indicate that the most likely location of the RP2 gene is between DXS426 and DXS7. DXS426 is therefore an important highly informative marker for the purposes of carrier detection and early diagnosis of RP2 and for the localization of the disease gene.  相似文献   

4.
Analysis of genetic heterogeneity in 40 kindreds with X-linked retinitis pigmentosa (XLRP), with 20 polymorphic markers, showed that significant heterogeneity is present (P=.001) and that 56% of kindreds are of RP3 type and that 26% are of RP2 type. The location of the RP3 locus was found to be 0.4 cM distal to OTC in the Xp21.1 region, and that of the RP2 locus was 6.5 cM proximal to DXS7 in Xp11.2-p11.3. Bayesian probabilities of linkage to RP2, RP3, or to neither locus were calculated. This showed that 20 of 40 kindreds could be assigned to one or the other locus, with a probability >.70 (14 kindreds with RP3 and 6 kindreds with RP2 disease). A further three kindreds were found to be unlinked to either locus, with a probability >.8. The remaining 17 kindreds could not be classified unambiguously. This highlights the difficulty of classifying families in the presence of genetic heterogeneity, where the two loci are separated by an estimated 16 cM.  相似文献   

5.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

6.
Progressive X-linked cone-rod dystrophy (COD1) is a retinal disease affecting primarily the cone photoreceptors. The COD1 locus originally was localized, by the study of three independent families, to a region between Xp11.3 and Xp21.1, encompassing the retinitis pigmentosa (RP) 3 locus. We have refined the COD1 locus to a limited region of Xp11.4, using two families reported elsewhere and a new extended family. Genotype analysis was performed by use of eight microsatellite markers (tel-M6CA, DXS1068, DXS1058, DXS993, DXS228, DXS1201, DXS1003, and DXS1055-cent), spanning a distance of 20 cM. Nine-point linkage analysis, by use of the VITESSE program for X-linked disorders, established a maximum LOD score (17.5) between markers DXS1058 and DXS993, spanning 4.0 cM. Two additional markers, DXS977 and DXS556, which map between DXS1058 and DXS993, were used to further narrow the critical region. The RP3 gene, RPGR, was excluded on the basis of two obligate recombinants, observed in two independent families. In a third family, linkage analysis did not exclude the RPGR locus. The entire coding region of the RPGR gene from two affected males from family 2 was sequenced and was found to be normal. Haplotype analysis of two family branches, containing three obligate recombinants, two affected and one unaffected, defined the COD1 locus as distal to DXS993 and proximal to DXS556, a distance of approximately 1.0 Mb. This study excludes COD1 as an allelic variant of RP3 and establishes a novel locus that is sufficiently defined for positional cloning.  相似文献   

7.
Linkage data between X-linked retinitis pigmentosa (XLRP) and nine X-chromosomal markers are reported. To test the assignment of XLRP to the Xp21 region (as considered at Human Gene Mapping 8), an analysis of XLRP and six markers flanking this region was undertaken. The XLRP locus was found to be excluded from the chromosome distal to ornithine transcarbamylase (OTC) (P = 6.5 X 10(-5]. Further data were accumulated with three more probes proximal to DXS7 (L1.28), the closest linked probe. Multipoint analysis of these data suggests a posterior probability of .94 that XLRP is proximal to DXS7 (L1.28), which has been mapped to the region Xp11.3.  相似文献   

8.
Summary The results of linkage analysis in a family with X-linked retinitis pigmentosa (XLRP) are presented. Probe M27B (DXS255), localised to Xp11.22, was only loosely linked to XLRP, whereas pHOC3 (OTC), in the more distal Xp21.1 region, was tightly linked. In this family, the conditional probability of an RP3 locus (in Xp21.1–p11.4) was found to be 0.978 compared with 0.021 for an RP2 locus (in Xp11.4–p11.2). Risk assessment showed that 2 out of 4 at risk females showing no clinical abnormality have a high probability of being genetic carriers of XLRP. Some affected males have recurrent respiratory infections as a result of a condition indistinguishable from the immotile cilia syndrome; indeed, there is an association between XLRP and susceptibility to respiratory infections in the majority of affected males. The possibility that previously observed ciliary abnormalities in XLRP patients might be associated specifically with an RP3 locus abnormality is discussed.  相似文献   

9.
The human X-linked hypophosphatemic rickets gene locus (HYP, formerly HPDR) has been previously localized by linkage analysis to Xp22.31-Xp21.3 and the locus order Xpter-DXS43-HYP-DXS41-Xcen established. Recombination between HYP and these flanking markers is frequently observed and additional markers have been sought. The polymorphic loci DXS197 and DXS207 have been localized to Xpter-Xp11 and Xp22-Xp21, respectively. We have further localized DXS197 to Xpter-Xp21.3 by using a panel of rodent-human hybrid cells and have established the map positions of DXS197 and DXS207 in relation to HYP by linkage studies of hypophosphatemic rickets families. Linkage between DXS197 and the loci DXS43, DXS85, and DXS207 was established with peak lod score values of 6.19, 0 = 0.032; 4.14, 0 = 0.000; and 3.01, 0 = 0.000, respectively. Multilocus linkage analysis mapped the DXS197 and DXS207 loci distal to HYP and demonstrated the locus order Xpter-DXS85-(DXS207, DXS43, DXS197)-HYP-DXS41-Xcen. These additional genetic markers DXS197 and DXS207 will be useful as alternative markers in the genetic counseling of some families.  相似文献   

10.
X-linked forms of retinitis pigmentosa (XLRP) are among the most severe, because of their early onset, often leading to significant vision loss before the 4th decade. Previously, the RP15 locus was assigned to Xp22, by linkage analysis of a single pedigree with "X-linked dominant cone-rod degeneration." After clinical reevaluation of a female in this pedigree identified her as affected, we remapped the disease to a 19.5-cM interval (DXS1219-DXS993) at Xp11.4-p21.1. This new interval overlapped both RP3 (RPGR) and COD1. Sequencing of the previously published exons of RPGR revealed no mutations, but a de novo insertion was detected in the new RPGR exon, ORF15. The identification of an RPGR mutation in a family with a severe form of cone and rod degeneration suggests that RPGR mutations may encompass a broader phenotypic spectrum than has previously been recognized in "typical" retinitis pigmentosa.  相似文献   

11.
X-linked progressive cone dystrophy (COD1) causes progressive deterioration of visual acuity, deepening of central scotomas, macular changes, and bull's-eye lesions. The cone electroretinography (ERG) is variably abnormal in affected males, and the rod ERG may also be abnormal. The clinical picture of heterozygous females ranges from asymptomatic to a widespread spectrum of cone-mediated dysfunction. A prior linkage study demonstrated linkage between the COD1 locus and the marker locus DXS84, assigned to Xp21.1, with no recombination. In the present study, we have clinically characterized a large four-generation family with COD1 and have performed a linkage analysis using seven polymorphic markers on the short arm of the X chromosome. No recombination was observed between the disease and the marker loci DXS7 and MAOA, suggesting that the location of COD1 is in the region Xp11.3, distal to DXS84 and proximal to ARAF1.  相似文献   

12.
X-linked congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by a presumptive defect of neurotransmission between the photoreceptor and bipolar cells. Carriers are not clinically detectable. A new classification for CSNB includes a complete type, which lacks rod function by electroretinography and dark adaptometry, and an incomplete type, which shows some rod function on scotopic testing. The refraction in the complete CSNB patients ranges from mild to severe myopia; the incomplete ranges from moderate hyperopia to moderate myopia. To map the gene responsible for this disease, we studied eight multigeneration families, seven with complete CSNB (CSNB1) and one with incomplete CSNB, by linkage analysis using 17 polymorphic X-chromosome markers. We found tight genetic linkage between CSNB1 and an Xp11.3 DNA polymorphic site, DXS7, in seven families with CSNB1 (LOD 7.35 at theta = 0). No recombinations to CSNB1 were found with marker loci DXS7 and DXS14. The result with DXS14 may be due to the small number of scored meioses (10). No linkage could be shown with Xq loci PGK, DXYS1, DXS52, and DXS15. Pairwise linkage analysis maps the gene for CSNB1 at Xp11.3 and suggests that the CSNB1 locus is distal to another Xp11 marker, TIMP, and proximal to the OTC locus. Five-point analysis on the eight families supported the order DXS7-CSNB1-TIMP-DXS225-DXS14. The odds in favor of this order were 9863:1. Removal of the family with incomplete CSNB (F21) revealed two most favored orders, DXS7-CSNB1-TIMP-DXS255-DXS14 and CSNB1-DXS7-TIMP-DXS255-DXS14. Heterogeneity testing using the CSNB1-M27 beta and CSNB1-TIMP linkage data (DXS7 was not informative in F21) was not significant to support evidence of genetic heterogeneity (P = 0.155 and 0.160, respectively).  相似文献   

13.
X-linked retinitis pigmentosa (XLRP) results from mutations in a number of loci, including RP2 at Xp11.3, and RP3 at Xp21.1. RP2 and RP3 genes have been identified by positional cloning. RP2 mutations are found in about 10% of XLRP patients. We performed a mutational screening of RP2 gene inpatients belonging to seven unrelated families in linkage with the RP2 locus. SSCP analysis detected three conformation variants, within exon 2 and 3. Direct sequencing of exon 2, disclosed a G-->A transition at nucleotide 449 (W150X), and a G-->T transversion in position 547 (E183X). Sequence analysis of exon 3 variant revealed an insertion (853/854insG), leading to a frameshift. In this patient, we detected an additional sequence alteration (A-->G at nucleotide 848, E283G). Each mutation was co-segregating with the disease in the affected family members available for the study. These mutations are expected to introduce a stop codon within the RP2 coding sequence probably resulting in a truncated or unstable protein.  相似文献   

14.
15.
An extended linkage analysis was performed on the large Latin-American kindred with X-linked retinitis pigmentosa (XLRP) and metallic sheen in the heterozygous carrier studied and reported previously by R.L. Nussbaum et al. (1985, Hum. Genet. 70:45-50) and on a smaller family with the same XLRP variant. In these kindreds the XLRP locus shows close linkage with Xp21 marker loci OTC and DXS206. The results of this linkage analysis agree with the observations made by Nussbaum et al. (1985) that an XLRP locus is distal to DXS7.  相似文献   

16.
In nine families in which X-linked retinitis pigmentosa (XLRP) is segregating, the lod scores of XLRP in a map of 10 RFLP loci were obtained by multipoint linkage analysis. The XLRP locus was located telomeric to DXS7 in seven of the families and centromeric to DXS7 in two of the families. Under the hypothesis of two XLRP loci, a heterogeneity (admixture) test was performed, providing significant evidence of heterogeneity in XLRP (P less than .01). No correlation was detected between the clinical manifestations of XLRP and the two different disease loci.  相似文献   

17.
A genetic locus (RP3) for X-linked retinitis pigmentosa (XLRP) has been assigned to Xp21 by genetic linkage studies and has been supported by two Xp21 male deletion patients with XLRP. RP3 appears to be the most centromeric of several positioned loci, including chronic granulomatous disease (CGD), McLeod phenotype (XK), and Duchenne muscular dystrophy (DMD). In one patient, BB, the X-chromosome deletion includes RP3 and extends to within the DMD locus. Using a DMD cDNA, the centromeric endpoint of this patient was cloned and used as a starting point for chromosome walking along a normal X chromosome. A single-copy probe, XH1.4, positioned near the centromeric junction but deleted in BB, was used along with a CGD cDNA probe to establish a refined long-range physical map. Both probes recognized a common SfiI fragment of 205 kb. As the CGD gene covers approximately 30-60 kb, the RP3 locus has been restricted to approximately 150-170 kb. A CpG island, potentially marking a new gene, was identified within the SfiI fragment at a position approximately 35 kb from the deletion endpoint in BB.  相似文献   

18.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the basic molecular defect is unknown. We previously located the WAS gene between two DNA markers, DXS7 (Xp11.3) and DXS14 (Xp11), and mapped it to the proximal short arm of the human X chromosome (Kwan et al., 1988, Genomics 3:39-43). In this study, further mapping was performed on 17 WAS families with two additional RFLP markers, TIMP and DXS255. Our data suggest that DXS255 is closer to the WAS locus than any other markers that have been previously described, with a multipoint maximum lod score of Z = 8.59 at 1.2 cM distal to DXS255 and thus further refine the position of the WAS gene on the short arm of the X chromosome. Possible locations for the WAS gene are entirely confined between TIMP (Xp11.3) and DXS255 (Xp11.22). Use of these markers thus represents a major improvement in genetic prediction in WAS families.  相似文献   

19.
Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON.  相似文献   

20.
X-linked Amelogenesis imperfecta (AI) is a genetic disorder affecting the formation of enamel. In the present study two families, one with X-linked dominant and one with X-linked recessive AI, were studied by linkage analysis. Eleven cloned RFLP markers of known regional location were used. Evidence was obtained for linkage between the AI locus and the marker p782, defining the locus DXS85 at Xp22, by using two-point analysis. No recombination was scored between these two loci in 15 informative meioses, and a peak lod score (Zmax) of 4.45 was calculated at zero recombination fraction. Recombination was observed between the more distal locus DXS89 and AI, giving a peak lod score of 3.41 at a recombination fraction of .09. Recombination was also observed between the AI locus and the more proximal loci DXS43 and DXS41 (Zmax = 0.09 at theta max = 0.31 and Zmax = 0.61 at theta max = 0.28, respectively). Absence of linkage was observed between the AI locus and seven other loci, located proximal to DXS41 or on the long arm of the X chromosome. On the basis of two-point linkage analysis and analysis of crossover events, we propose the following order of loci at Xp22: DXS89-(AI, DXS85)-DXS43-DXS41-Xcen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号