首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Attempts to understand the intricacies of biosilicification in sponges are hampered by difficulties in isolating and culturing their sclerocytes, which are specialized cells that wander at low density within the sponge body, and which are considered as being solely responsible for the secretion of siliceous skeletal structures (spicules). By investigating the homosclerophorid Corticium candelabrum, traditionally included in the class Demospongiae, we show that two abundant cell types of the epithelia (pinacocytes), in addition to sclerocytes, contain spicules intracellularly. The small size of these intracellular spicules, together with the ultrastructure of their silica layers, indicates that their silicification is unfinished and supports the idea that they are produced "in situ" by the epithelial cells rather than being incorporated from the intercellular mesohyl. The origin of small spicules that also occur (though rarely) within the nucleus of sclerocytes and the cytoplasm of choanocytes is more uncertain. Not only the location, but also the structure of spicules are unconventional in this sponge. Cross-sectioned spicules show a subcircular axial filament externally enveloped by a silica layer, followed by two concentric extra-axial organic layers, each being in turn surrounded by a silica ring. We interpret this structural pattern as the result of a distinctive three-step process, consisting of an initial (axial) silicification wave around the axial filament and two subsequent (extra-axial) silicification waves. These findings indicate that the cellular mechanisms of spicule production vary across sponges and reveal the need for a careful re-examination of the hitherto monophyletic state attributed to biosilicification within the phylum Porifera.  相似文献   

2.
Summary The spicule primordium is formed in an intercellular cavity within a group of sclerocytes. This cavity contains organic material which ensheaths the growing spicule but does not appear to determine the nature of the mineral morph (magnesian calcite) or the crystallographic orientation of the spicule. The tip of each growing spicule ray is seated in a dense cup in the cytoplasm of the sclerocyte concerned. Both ends of monaxons are initially inserted each into a dense cup. As rays elongate the sclerocyte membrane around the tip becomes invaginated and forms a system of converging spaces that possibly indicate high secretory activity in that region. Spicule growth involves the displacement and expansion of the organic sheath by the enlarging spicule. Fully formed spicules which are exposed to the mesohyl become surrounded by collagen fibrils. However, these fibrils are in no way concerned with the process of mineral deposition and are never found within the spicule calcite.  相似文献   

3.
The solitary stolidobranch ascidian Herdmania momus contains numerous calcium carbonate spicules in its tunic and body tissues. The slender body spicules form inside complex sheaths in the body wall and branchial basket, where they remain for the life of the animal. The much smaller tunic spicules form inside the tunic blood vessels and then migrate to the tunic surface, where they become anchored by their spiny base. This paper is an ultrastructural investigation of the formation of the body spicules; the tunic spicules, which apparently form quite differently, will be the focus of a future study. The body spicules are composed of rows of closely packed acicular spines which form completely extracellularly. The spine tips are covered by flattened, highly pseudopodial sclerocytes bound together by tightly interdigitating cell processes. The basal regions of contiguous spines are covered by very thin sclerocyte cell processes. An organic matrix is present within the spines; its exact nature is not clear. A very dense extracellular inter-spine matrix is located between the spine tips and the contiguous basal regions. Presclerocytes within the sheaths between the spicules are probably responsible for formation of the extracellular structures of the sheaths. The presclerocytes appear to aggregate and transform into sclerocytes at the apical end of the spicule. New spines are added at the apical end of the spicule as well as between larger spines. Comparisons are made between body spicule formation in H. momus and skeletogenesis in echinoids.  相似文献   

4.
Germanium (Ge), in the form of germanic acid, at a Ge/Si molar ratio of 1.0 inhibits gemmule development and silica deposition in the marine demosponge Suberites domuncula. Lower Ge/Si ratios inhibit the growth in length of the silica spicules (tylostyles) producing short structures, but with relatively normal morphology and close to normal width; spherical protuberances occasionally occur on these spicules. A few of the short spicules possess completely round rather than pointed tips. Many of the latter develop when Ge is added (pulsed) to growing animals, thus inducing a change in spicule type. These results indicate that the growth in length of the axial filament is more sensitive to Ge inhibition than is silica deposition and that pointed spicule tips normally develop because the growth of the axial filament at the spicule tip is more rapid than silica deposition. Newly formed spicules initiate silica deposition at the spicule head but the absence of Ge-induced bulbs as in freshwater spicules (oxeas) leaves open the question of whether there is a silicification center(s) present in Suberites tylostyles. The morphogenesis of freshwater oxeas and of marine tyolstyles appears fundamentally different-bidirectional growth in the former and unidirectional growth in the latter. X-ray analysis demonstrate relatively uniform Ge incorporation into the silica spicules with considerable variation from spicule to spicule in the incorporated level. Increased silicic acid concentration induces the formation of siliceous spheres, suggesting that the axial filament becomes prematurely encased in silica.  相似文献   

5.
The New Zealand ascidian Pyura pachydermatina has a 7–10 cm long body at the end of a stalk up to 1 m long and 1–2 cm in diameter. Two different spicule types are present: dumbbell-shaped spicules of calcite in the fibrous tunic that covers the body and stalk, and antler-shaped spicules of amorphous calcium carbonate in the soft body tissues. Both types form extracellularly within a closed compartment surrounded by an epithelium of sclerocytes. In adults the tunic spicules form in 2–3 weeks in the lumen of the tunic blood vessels, as determined by calcein uptake studies. They add mineral only while surrounded by the sclerocyte epithelium, which is anchored to the vessel wall. Ultimately the sclerocytes rupture at one or more leading points on the spicule. The blood vessel epithelium also becomes very thin at these points and either ruptures or the cells separate. allowing the spicules to migrate out into the tunic. The sclerocytes degenerate and the blood vessel closes behind the migrating spicule, thus maintaining the vessel's integrity. Tunic spicules accumulate in the subcuticular region of the stalk, but the outermost layer of tunic covering the body is periodically sloughed off along with some spicules. This gives the "neck" between body and stalk a flexibility that allows it to orient to currents, and prevents an accumulation of epizoic organisms on the body. The antler spicules form within blood sinuses of the body tissues. The mineral and organic material are arranged in concentric layers. In the branchial sac, oral tentacles, gut and endostyle, where antler spicules occur most densely, the branches interlock, providing support to the soft tissues. They are of many sizes and apparently remain where they form, increasing in number and size throughout the animal's lifespan.  相似文献   

6.
The siliceous skeleton of demosponges is constructed of spicules. We have studied the formation of spicules in primmorphs from Suberites domuncula. Scanning electron microscopy and transmission electron-microscopical (TEM) analyses have revealed, in the center of the spicules, an axial canal that is 0.3–1.6 m wide and filled with an axial filament. This filament is composed of the enzyme silicatein, which synthesizes the spicules. TEM analysis has shown that spicule formation starts intracellularly and ends extracellularly in the mesohyl. At the initial stage, the axial canal is composed only of silicatein, whereas membranous structures and fibrils (10–15 nm in width) can later also be identified, suggesting that intracellular components protrude into the axial canal. Antibodies against silicatein have been applied for Western blotting; intracellularly, silicatein is processed to the mature form (24 kDa), whereas the pro-enzyme with the propeptide (33 kDa) is detected extracellularly. Silicatein undergoes phosphorylation at five sites. Immunohistological analysis has shown that silicatein exists in the axial canal (axial filament) and on the surface of the spicules, suggesting that they grow by apposition. Finally, we have demonstrated that the enzymic reaction of silicatein is inhibited by anti-silicatein antibodies. These data provide, for the first time, a comprehensive outline of spicule formation.This work was supported by grants from the European Commission (SILIBIOTEC), the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin) and the International Human Frontier Science Program.  相似文献   

7.
In contrast to siliceous sponge spicules, the biomineralization in calcareous sponges is poorly understood. In particular, the existence of a differentiated central core in calcareous spicules is still controversial. Here we combine high-spatial resolution analyses, including NanoSIMS, Raman, SXM, AFM, SEM and TEM to investigate the composition, mineralogy and ultrastructure of the giant tetractines of Leuconia johnstoni Carter, 1871 (Baeriidae, Calcaronea) and the organization of surrounding cells. A compositionally distinct core is present in these spicule types. The core measures 3.5–10 μm in diameter and is significantly depleted in Mg and lightly enriched in S compared with the adjacent outer layer in the spicule. Measured Mg/Ca ratios in the core range from 70 to 90 mmol/mol compared to 125–130 mmol/mol in the adjacent calcite envelope. However, this heterogeneous distribution of Mg and S is not reflected in the mineralogy and the microstructure. Raman spectroscopy demonstrates a purely calcitic mineralogy. SEM examination of slightly etched spicules indicates an ultrastructure organized hierarchically in a concentric pattern, with layers less than 250 nm in width inside layers averaging 535 ± 260 nm. No change in structural pattern corresponds to the Mg/Ca variation observed. AFM and TEM observations show a nanogranular organization of the spicules with a network of intraspicular organic material intercalated between nanograins 60–130 nm in diameter. Observations of sclerocyte cells in the process of spiculogenesis suggest that the compositionally distinct core is produced by a sub-apical sclerocyte “founder cell” that controls axial growth, while the envelope is secreted by lateral sclerocytes “thickener cells”, which control radial growth.  相似文献   

8.
The skeletal elements (spicules) of the demosponge Lubomirskia baicalensis were analyzed; they are composed of amorphous, non-crystalline silica, and contain in a central axial canal the axial filament which consists of the enzyme silicatein. The axial filament, that orients the spicule in its longitudinal axis exists also in the center of the spines which decorate the spicule. During growth of the sponge, new serially arranged modules which are formed from longitudinally arranged spicule bundles are added at the tip of the branches. X-ray analysis revealed that these serial modules are separated from each other by septate zones (annuli). We describe that the longitudinal bundles of spicules of a new module originate from the apex of the earlier module from where they protrude. A cross section through the oscular/apical-basal axis shows that the bundle rays are organized in a concentric and radiate pattern. High resolution magnetic resonance microimaging studies showed that the silica spheres of the spicules in the cone region contain high amounts of 'mobile' water. We conclude that the radiate accretive growth pattern of sponges is initiated in the apical region (cones) by newly growing spicules which are characterized by high amounts of 'mobile' water; subsequently spicule bundles are formed laterally around the cones.  相似文献   

9.
The process of microsclere secretion was examined in vivo through glass coverslip implants in three species of the genus Mycale from São Sebastião channel, southeastern Brazil: Mycale (Aegogropila) angulosa, Mycale (Arenochalina) laxissima, and Mycale (Carmia) microsigmatosa. All three species adhered well to coverslips and developed normally through at least 2 weeks. Similar experiments with different species (Cinachyrella alloclada, Amphimedon viridis, Haliclona melana, and Aplysina caissara) were also successful with one exception (the cartilaginous Chondrilla nucula), indicating that the method can be applied to most demosponges. Microsclerocyte size varied according to the type of microsclere secreted, but all were elongated to fusiform and had small, anucleolated nuclei. Spicules were transported by microsclerocytes alone, without any other cell type ("helper cells") involved. Secretion of a microsclere was performed by a single sclerocyte. Although some axial filaments were found free in the mesohyl, all microsclere secretion in these animals was fully intracellular. Normal axial filaments were observed in most types of microscleres of the Mycale species (sigmas, toxas, and microxeas). Timed observations of sclerocytes suggest that immature spicules with the aspect of short straight rods with thick ends might be the precursors of the anisochelae. Observed differences in the size versus number of toxa secreted may indicate either the presence of two distinct subpopulations of toxa-producing microsclerocytes or that the initial number of axial filaments at the beginning of silica deposition may determine the final size of the spicules. Although other microscleres such as sigmas and chelae are secreted in a one cell-one spicule basis, several toxas and microxeas can be secreted simultaneously in a single cell.  相似文献   

10.
The major structural and enzymatically active protein in spicules from siliceous sponges, e.g., for Suberites domuncula studied here, is silicatein. Silicatein has been established to be the key enzyme that catalyzes the formation of biosilica, a polymer that represents the inorganic scaffold for the spicule. In the present study, it is shown, by application of high-resolution transmission and scanning transmission electron microscopy that, during the initial phase of spicule synthesis, nanofibrils with a diameter of around 10 nm are formed that comprise bundles of between 10 and 20 nanofibrils. In intracellular vacuoles, silicasomes, the nanofibrils form polar structures with a pointed tip and a blunt end. In a time-dependent manner, these nanofibrillar bundles become embedded into a Si-rich matrix, indicative for the formation of biosilica via silicatein molecules that form the nanofibrils. These biosilicified nanofibrillar bundles become extruded from the intracellular space, where they are located in the silicasomes, to the extracellular environment by an evagination process, during which a cellular protrusion forms the axial canal in the growing spicule. The nanofibrillar bundles condense and progressively form the axial filament that becomes localized in the extracellular space. It is concluded that the silicatein-composing nanofibrils act not only as enzymatic silica bio-condensing platforms but also as a structure-giving guidance for the growing spicule.  相似文献   

11.
The secretion of siliceous spicules in the marine demosponge Microciona prolifera (Ellis and Solander) is by three different means. Styles are secreted by sclerocytes with archeocyte characteristics (nucleolate nucleus, phagosomes). chelas are formed by small sclerocytes with anucleolate nuclei, and toxas are apparently formed extracellularly within membranous material. Genetically and physiologically equivalent explants of this sponge were grown at 15, 20, and 25 C for four weeks. Analyses of spicule dimensions show little correlation of temperature with spicule length, except in the case of toxas. but a clear inverse relationship of spicule width with temperature. It is suggested that thicker spicules are formed at lower temperatures due to the more efficient entrapment of silicon rather than to effects upon silicon transport. Chela dimensions are very uniform implying an all or none process in their secretion. Differences in spicule dimensions between individual sponges grown at these temperatures may be due to the highly complex pathways of silicon transport and/or to genetic differences.  相似文献   

12.
Summary In all cases an organic axial filament within the silica spicules of Stelletta grubii forms the core of the major axes of the glass. In the small, star-shaped silica spicules (asters) the filament is shown for the first time to be radial with an enlarged center; in the large four-rayed spicules (triaenes) it is four-rayed; and in the large single-rayed spicules (oxeas) the filament is single-rayed. In situ, the filament is not dissolved by boiling nitric acid and thus is apparently protected by encasement within the glass which can also be stratified. The small silica asters are formed by single cells which resemble the so-called spherulous cells of other sponges. The very large size of triaenes and oxeas suggests that they may possibly be formed by more than one cell. The diameter of the filament in the much smaller asters is much narrower than the filament in the larger spicules, indicating a possible relationship between filament diameter and spicule diameter. While the axial filament in larger spicules frequently has a triangular cross-section it can also be hexaognal. Some aster filaments also retain a close to hexagonal cross-section. Filaments freed from large spicules by hydrofluoric acid display a complex morphology; possibly there is an internal silicified core. Some reported aspects of filament morphology are, however, probably artefacts of desilicification with hydrofluoric acid. Offprint requests to: T.L. Simpson, Department of Biology, University of Hartford, West Harford, Connecticut 06117, USA (Permanent affiliation)  相似文献   

13.
The effect of germanium on the secretion of siliceous spicules by the freshwater sponge Spongilla lacustris was investigated by exposing germinating and hatching gemmules to varying concentrations of germanium (Ge) in the presence of silicon (Si). Results were analyzed quantitatively and qualitatively and demonstrate that a [Ge]/[Si] (= molar ratio) of 1.0 completely inhibits silicon deposition. Intermediate ratios (0.5, 0.1, 0.01) which are permissive to spicule appearance result in fewer, shorter, and thinner spicules, in proportionately fewer microscleres, and in short bulbous megascleres. The size of the bulb increases with increasing [Ge]/[Si], while the length of the bulbous megascleres decreases with increasing [Ge]/[Si]. Microscleres do not demonstrate these graded responses suggesting that they are secreted in an all or none manner. Swellings produced in pond water and bulbs produced in germanium appear to decrease in size with time indicating a spreading of the accumulated silica. The effect of germanium on spicule secretion can be partially explained by its ability to uncouple the growth in length of the axial filament from the growth of the surrounding silicalemma. Under these conditions excess silicalemma is produced in which silica accumulates as bulbs in short spicules. Continuous exposure to Ge is necessary to produce this altered morphology. It is conjectured that the bulbs may be retained due to an inhibition of spreading. which in turn may be caused by the incorporation of germanium into the silica.  相似文献   

14.
The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly and they are subsequently extruded to the extracellular space. In contrast to the composition of the silicateins in the megascleres (isoforms: -alpha, -beta and -gamma), the axial filaments of the microscleres contain only one form of silicatein, termed silicatein-alpha/beta, with a size of 25kDa. Silicatein-alpha/beta undergoes three phosphorylation steps. The gene encoding silicatein-alpha/beta was identified and found to comprise the same characteristic sites, described previously for silicateins-alpha or -beta. It is hypothesized, that the different composition of the axial filaments, with respect to silicateins, contributes to the morphology of the different types of spicules.  相似文献   

15.
Many of the invertebrates possess calcium carbonate spicules.This paper is a review of the formation of these structuresin the Porifera, Coelenterata, Platyhelminthes, Mollusca, Echinodermataand Ascidiacea. Mature spicules appear to be extracellular structures.Sponge spicules initiate intercellularly then become extracellular.Alcyonarian, turbellarian, echinoid and ascidian spicule depositionbegins intracellularly and then becomes extracellular. The continuationof growth in the extracellular environment has not been documentedexcept for the echinoids. Placophoran spicules initiate andremain as extracellular structures. Early spicule growth seemsto occur from or within a single cell. However, cell aggregationand/or neighboring cells appear to be important to the processof spicule formation. The spicule forming cells, in general,are found in a collagenous medium which may be associated withspicule growth. The organic matrix from the spicules of the gorgonian Leptogorgiavirgulata is a glycoprotein. Autoradiography reveals that thismatrix is apparently synthesized in the rough endoplasmic reticulumand Golgi complexes and then transported to the spicule formingvacuole via Golgi vesicles. To gain information about the entryand transport of calcium ions, the effects of ouabain and vanadateon calcium uptake were examined. Ouabain had no effect on calciumuptake. Vanadate treatment increased the uptake of calcium inscleroblasts and epithelial tissue and decreased its uptakein spicules. This may suggest that vanadate sensitive ATPasesare involved in the pumping of calcium out of scleroblasts,out of epithelial cells into the mesoglea, and into scleroblastorganelles. Autoradiography using 45Ca indicates that the majorityof these ions initially accumulate in the branch axis. The labelmoves through the axial epithelium to the mesoglea and reachesthe spiculeforming vacuoles in the scleroblasts via dense bodies  相似文献   

16.
The endoskeletal spicules of sea urchin larvae are composed of calcite, a surrounding extracellular matrix, and small amounts of occluded matrix proteins. The spicules are formed by primary mesenchyme cells (PMCs) in the blastocoel of the embryo, where they adopt stereotypical locations, thereby specifying where spicules will form. PMCs also fuse to form cytoplasmic cords connecting the cell bodies, and it is within the cords that spicules arise. The mineral phase contains 5% Mg as well as Ca, and about 0.1% of the mass is protein. The matrix and mineral form concentric plies, and the composite has different physical properties than those of pure calcite. The calcite diffracts as a single crystal and is composed of well-ordered, but not perfectly ordered, microdomains. There is evidence for adsorption of matrix proteins to specific crystal faces at domain boundaries, which may help regulate crystal growth and texture. Immature spicules contain considerable precipitated amorphous CaCO3, and PMCs also have vesicles that contain amorphous CaCO3. This suggests the hypothesis that the cellular precursor to the spicules is actually amorphous CaCO3 stabilized in the cell by protein. The spicule s enveloped by the PMC cord, but is topologically exterior to the cell. The PMC plasmalemma is tightly applied to the developing spicules, except perhaps at the elongating tip. The characteristics, localization, and possible function of the four identified matrix proteins are discussed. SM50, SM37, and PM27 all primarily enclose the mineral, though small amounts are occluded. SM30 is found in cellular vesicles and is probably the principal occluded protein of the spicule.  相似文献   

17.
Biomineralization processes are characterized by controlled deposition of inorganic polymers/minerals mediated by functional groups linked to organic templates. One metazoan taxon, the siliceous sponges, has utilized these principles and even gained the ability to form these polymers/minerals by an enzymatic mechanism using silicateins. Silicateins are the dominant protein species present in the axial canal of the skeletal elements of the siliceous sponges, the spicules, where they form the axial filament. Silicateins also represent a major part of the organic components of the silica lamellae, which are cylindrically arranged around the axial canal. With the demosponge Suberites domuncula as a model, quantitative enzymatic studies revealed that both the native and the recombinant enzyme display in vitro the same biosilica-forming activity as the enzyme involved in spicule formation in vivo. Monomeric silicatein molecules assemble into filaments via fractal intermediates, which are stabilized by the silicatein-interacting protein silintaphin-1. Besides the silicateins, a silica-degrading enzyme silicase acting as a catabolic enzyme has been identified. Growth of spicules proceeds in vivo in two directions: first, by axial growth, a process that is controlled by evagination of cell protrusions and mediated by the axial filament-associated silicateins; and second, by appositional growth, which is driven by the extraspicular silicateins, a process that provides the spicules with their final size and morphology. This radial layer-by-layer accretion is directed by organic cylinders that are formed around the growing spicule and consist of galectin and silicatein. The cellular interplay that controls the morphogenetic processes during spiculogenesis is outlined.  相似文献   

18.
The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three phases: (I) formation of an axial canal; (II) evagination of a cell process into the axial canal, and (III) assembly of the axial filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all around the spicule. The membranes of the silicasomes are interspersed by pores of ≈ 2 nm that are likely associated with aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can summarize the sequence of events that govern spicule formation as follows: differential GENETIC READOUT (of silicatein) → FRACTAL ASSOCIATION of the silicateins → EVAGINATION of cells by hydro-mechanical forces into the axial canal → and finally PROCESSIVE BIO-SILICA POLYCONDENSATION around the axial canal. We termed this process, occurring sequentially or in parallel, BIO-INORGANIC SELF-ORGANIZATION.  相似文献   

19.
Sponges (phylum Porifera) have remarkable regenerative and reconstitutive abilities and represent evolutionarily the oldest metazoans. To investigate sponge stem cell differentiation, we have focused on the asexual reproductive system in the freshwater sponge Ephydatia fluviatilis. During germination, thousands of stem cells proliferate and differentiate to form a fully functional sponge. As an initial step of our investigation of stem cell (archeocyte) differentiation, we isolated molecular markers for two differentiated cell types: spicule-making sclerocyte cells, and cells involved in innate immunity. Sclerocyte lineage-specific Ef silicatein shares 45% to 62% identity with other sponge silicateins. As in situ hybridization of Ef silicatein specifically detects archeocytes possibly committed to sclerocytes, as well as sclerocytes with an immature or mature spicule, therefore covering all the developmental stages, we conclude that Ef silicatein is a suitable sclerocyte lineage marker. Ef lectin, a marker for the cell type involved in innate immunity, shares 59% to 65% identity with the marine sponge Suberites domuncula galactose-binding protein (Sd GBP) and horseshoe crab Tachypleus tridentatus tachylectin1/lectinL6. Since Sd GBP and tachylectin1 are known to bind to bacterial lipopolysaccharides and inhibit the growth of bacteria, Ef lectin may have a similar function and be expressed in a specialized type of cell involved in defense against invading bacteria. Ef lectin mRNA and protein are not expressed in early stages of development, but are detected in late stages. Therefore, Ef lectin may be specifically expressed in differentiating and/or differentiated cells. We suggest Ef lectin as a marker for cells that assume innate immunity in freshwater sponges.  相似文献   

20.
皖南早寒武世荷塘组海绵骨针化石   总被引:10,自引:1,他引:9  
本文报道皖南休宁县早寒武世荷塘组黑色页岩中产出的海绵骨针化石组合,这些海绵骨针化石具有较高的丰度和分异度,它们以二轴四射针、T型针、三轴六射针和三轴五射针为主。骨针形态完整,并保存了内部轴丝、轴管以及同心圈层等微细构造。黄铁矿化在化石的保存中起了重要的作用,化石产出的时代可能为梅树村阶至筇竹寺阶(Tommotian-Atdabanian),这个化石组合证实了海绵动物在早寒武世已开始迅速分异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号