首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A strategy that facilitates the identification of substrates for protein carboxyl methyltransferases that form "stable" methyl esters, i.e., those that remain largely intact during conventional polyacrylamide gel electrophoresis is described. Rat PC12 cells were cultured in the presence of adenosine dialdehyde (a methylation inhibitor) to promote the accumulation of hypomethylated proteins. Nonidet P-40 cell extracts were then incubated in the presence of S-[methyl-3H]adenosyl-L-methionine to label methyl-accepting sites via endogenous methyltransferases. After labeled proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel slices were incubated in 4 N methanesulfonic acid or 6 N HCl to hydrolyze methyl esters. The resulting [3H]methanol was detected by trapping in liquid scintillation fluid. Seven carboxyl methylated proteins were observed with masses ranging from 18 to 96 kDa. Detection of five of these proteins required prior treatment of cells with adenosine dialdehyde, while methyl incorporation into one protein at 18 kDa was substantially enhanced by the treatment. The use of acidic conditions for methyl ester hydrolysis has an important advantage over assays that utilize alkaline hydrolysis conditions. In PC12 cells, and possibly other cell types where there are significant levels of arginine methylation, the methanol signal becomes obscured by high levels of volatile methylamines generated under the alkaline conditions. Carrying out diffusion assays under acidic conditions eliminates this interference. Adenosine dialdehyde, by virtue of increasing the methyl-accepting capacity of substrates for protein carboxyl methyltransferases, in combination with a more selective assay for carboxyl methylation, should prove useful in the isolation and characterization of new protein carboxyl methyltransferases and their substrates.  相似文献   

2.
Tyrosine protein kinase (TPK) activity was detected in rat renal brush-border membranes (BBM) using poly(Glu80Na,Tyr20) as a substrate. Maximal TPK activity required prior detergent dispersion of the membranes with 0.05% Triton X-100 and the presence of vanadate, a potent inhibitor of phosphotyrosine protein phosphatases, in the phosphorylation medium. Optimal conditions for measurement of TPK activity were 10 mM of MgCl2 and MnCl2, at 30 degrees C and pH 7.0. TPK activity was inhibited by genistein, with a IC50 value of 15 microM, while no inhibition was observed in the presence of 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H7), an inhibitor of serine-threonine kinases. TPK activity was enriched 4-fold in the BBM fraction relative to cortex homogenate. It was co-enriched with BBM enzyme markers, but not with those of the basolateral membrane (BLM). The endogenous substrates of TPK in brush-border and basolateral membranes were determined by Western blot analysis using an antiphosphotyrosine monoclonal antibody (PY20). Various phosphotyrosine-containing proteins were found in the BBM (31, 34, 46, 50, 53, 72, 90, 118 and 170 kDa) and in the BLM (37, 48, 50, 53, 72, 90, 130 and 170 kDa). Addition of exogenous insulin receptor to BBM and BLM increased the phosphorylation of most of the substrates. Solubilization of the TPK activity from BBM with 0.5% CHAPS and subsequent gel filtration on Superdex 75 yielded two peaks of tyrosine protein kinase activity with apparent molecular masses of 49 and 66 kDa. These results provide evidence for a non-receptor TPK activity associated with the renal tubular luminal membrane.  相似文献   

3.
Abstract: A method of polyacrylamide gel electrophoresis utilizing the discontinuous pH-stacking gel format, the cationic detergent cetylpyridinium chloride, and an acidic buffer system has been applied to detection of specific substrates for protein carboxyl methyltransferase (PCM, EC 2.1.1.24) in cytosol fractions of bovine cerebral cortex. This electrophoresis system produces a high-resolution separation of proteins while preventing spontaneous hydrolysis of protein carboxyl methyl esters. Separation occurs largely on the basis of molecular weight. By running polyacrylamide gels at 4°C or 25°C, it was possible to demonstrate that any specific methyl-accepting protein is modified to form a labile methyl ester rather than the more stable N -derivative. Using this system, we have found that partially purified fractions of PCM contain a variety of endogenous methyl-accepting proteins. The apparent specificity of these substrates varies widely; some apparently abundant proteins show little or no methylation, while other apparently less abundant proteins exhibit a relatively high degree of methylation. One protein, with an apparent Mr of 46,000, exhibited an exceptional degree of methylation. Two distinct classes of protein carboxyl methyl esters could be distinguished by their differing susceptibility to nonenzymatic hydrolysis. The possible relevance of our findings to the recent suggestion that PCM specifically methylates abnormal d-aspartyl residues in age-racemized proteins is considered.  相似文献   

4.
Ribosomal protein methylase has been purified from Escherichia coli strain Q13 using methyl-deficient 50S subunits as substrates. The purified enzyme (or enzyme complex) which is devoid of rRNA methylating activity is quite stable and has a pH optimum around 8.0. The Km for S-adenosyl-L-methionine is 3.2 muM. The molecular weight of the enzyme is 3.1 X 10(4); minor methylating activity was also detected for protein peaks with molecular weights of 1.7 X 10(4) and 5.6 X 10(4). Protein L11 is the major protein methylated by the purified enzyme. Product analysis revealed the presence of N epislon-trimethyllysine, a methylated neutral amino acid(s) previously observed in protein L11 and N epislon-monomethyllysine. Free ribosomal proteins were much better substrates for the methylation, indicating that methylation of 50S ribosomal proteins can occur before the complete assembly of the 50S ribosomal subunit.  相似文献   

5.
The endogenous substrate for protein carboxymethyltransferase in brain was examined. Several polypeptides were methylated when brain slices were incubated with L-methionine or when subcellular fractions of brain, such as the cytosolic fraction, were incubated with S-adenosyl L-methionine. Two methyl-accepting proteins in the cytoplasm were identified as tubulin and high molecular weight microtubule-associated proteins (300 kDa), which are components of microtubules. Tubulin behaved as a 43 kDa protein in acidic polyacrylamide gel electrophoresis, but as a 55 kDa protein in SDS-polyacrylamide gel electrophoresis. The methyl moiety transferred to these proteins from L-methionine was labile at alkaline pH. The high molecular weight microtubule-associated proteins showed higher methyl-accepting activity than tubulin or ovalbumin, which was used as a standard substrate: about 20 mmol of high molecular weight microtubule-associated proteins, 2 mmol of tubulin and 10 mmol of ovalbumin were methylated per mol of each protein in 30 min under the experimental conditions used.  相似文献   

6.
Protein carboxyl methylation in rat kidney cytosol is increased by the addition of guanosine 5'-O-[gamma-thio]triphosphate (GTPgammaS), a non-hydrolysable analogue of GTP. GTPgammaS-stimulated methyl ester group incorporation takes place on isoaspartyl residues, as attested by the alkaline sensitivity of the labelling and its competitive inhibition by L-isoaspartyl-containing peptides. GTPgammaS was the most potent nucleotide tested, whereas GDPbetaS and ATPgammaS also stimulated methylation but to a lesser extent. Maximal stimulation (5-fold) of protein L-isoaspartyl methytransferase (PIMT) activity by GTPgammaS was reached at a physiological pH in the presence of 10 mM MgCl2. Other divalent cations, such as Cu2+, Zn2+ and Co2+ (100 microM), totally inhibited GTPgammaS-dependent carboxyl methylation. The phosphotyrosine phosphatase inhibitor vanadate potentiated the GTPgammaS stimulation of PIMT activity in the kidney cytosol at a concentration lower than 40 microM, but increasing the vanadate concentration to more than 40 microM resulted in a dose-dependent inhibition of the GTPgammaS effect. The tyrosine kinase inhibitors genistein (IC50 = 4 microM) and tyrphostin (IC50 = 1 microM) abolished GTPgammaS-dependent PIMT activity by different mechanisms, as was revealed by acidic gel analysis of methylated proteins. Whereas tyrphostin stabilised the methyl ester groups, genistein acted by blocking a crucial step required for the activation of PIMT activity by GTPgammaS. The results obtained with vanadate and genistein suggest that tyrosine phosphorylation regulates GTPgammaS-stimulated PIMT activity in the kidney cytosol.  相似文献   

7.
J A Duerre  H A Fetters 《Biochemistry》1985,24(24):6848-6854
Protein carboxyl methyltransferase and protein methylesterase activity was assayed in various cell fractions prepared from rat livers. Significant amounts of protein carboxyl methyltransferase were detected in the cytosol and nucleoplasm. The cellular concentration of this enzyme paralleled development, activity being highest in the liver from young animals. If methylation was inhibited at any point during the reaction with S-adenosylhomocysteine, protein methylesterase activity was evident by a rapid decrease in carboxyl-methylated proteins. Protein methylesterase activity could be assessed by measuring the amount of [3H]methanol present in reaction filtrates. After a 10-min lag, the rate of demethylation was equivalent to the rate of methylation. The turnover of methyl groups was primarily enzymatic, since little or no methanol was generated when adrenocorticotropic hormone was incubated with purified protein carboxyl methyltransferase. Assessment of protein methylesterase activity as a function of the amount of methanol in the reaction filtrates represents minimal values, since the resultant [3H]methanol was metabolized rapidly via an alcohol dehydrogenase and/or oxidase. The rapid turnover of the protein methyl esters makes it difficult to assess the endogenous methyl acceptor proteins. Protein methyl esters were not detectable in any significant amounts in hepatic cell fractions in vivo; however, the nuclei contained measurable amounts of carboxyl-methylated proteins in vitro. These proteins are firmly bound to DNA but are not an integral part of the nucleosome. Analysis of the proteins, after fractionation on hydroxylapatite and sodium dodecyl sulfate-acrylamide gel electrophoresis, revealed that several non-histone chromosomal proteins were carboxyl methylated. The approximate molecular weights of these proteins were 172K, 106K, 98K, 81K, 66K, 62K, 52K, and 38K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Abstract: Synaptosomes from five regions of adult rat brain were isolated, analyzed for methyl acceptor proteins, and probed for methyltransferases by photoaffinity labeling. Methylated proteins of 17 and 35 kDa were observed in all regions, but cerebellar synaptosomes were enriched in a 21–26-kDa family of methyl acceptor proteins and contained a unique major methylated protein of 52 kDa and a protein of 50 kDa, which was methylated only in the presence of EGTA. When cerebellar and liver subcellular fractions were compared, the cytosolic fractions of each tissue contained methylated proteins of 17 and 35 kDa; liver membrane fractions contained few methylated proteins, whereas cerebellar microsomes had robust methylation of the 21–26-kDa group. Differential centrifugation of lysed cerebellar synaptosomes localized the 17- and 35-kDa methyl acceptor proteins to the synaptoplasm, the 21–26-kDa family to the synaptic membranes, and the 52-kDa to synaptic vesicles. The 21–26-kDa family was identified as GTP-binding proteins by [α-32P]GTP overlay assay; these proteins contained a putative methylated carboxyl cysteine, based on the presence of volatile methyl esters and the inhibition of methylation by acetylfarnesylcysteine. The 52-kDa methylated protein also contained volatile methyl esters, but did not bind [α-32P]GTP. When synaptosomes were screened for putative methyltransferases by S -adenosyl-L-[ methyl -3H]methionine photoaffinity labeling, a protein of 24 kDa was detected only in cerebellum, and this labeled protein was localized to synaptic membranes.  相似文献   

10.
It has previously been shown that incubation of mammalian cell cytosolic extracts with the protein kinase inhibitor tyrphostin A25 results in enhanced transfer of methyl groups from S-adenosyl-[methyl-3H]methionine to proteins. These findings were interpreted as demonstrating tyrphostin stimulation of a novel type of protein carboxyl methyltransferase. We find here, however, that tyrphostin A25 addition to mouse heart cytosol incubated with S-adenosyl-[methyl-3H]methionine or S-adenosyl-[methyl-14C]methionine stimulates the labeling of small molecules in addition to proteins. Base treatment of both protein and small molecule fractions releases volatile radioactivity, suggesting labile ester-like linkages of the labeled methyl group. Production of both the base-volatile product and labeled protein occurs with tyrphostins A25, A47, and A51, but not with thirteen other tyrphostin family members. These active tyrphostins all contain a catechol moiety and are good substrates for recombinant and endogenous catechol-O-methyltransferase. Inhibition of catechol-O-methyltransferase activity with tyrphostin AG1288 prevents both base-volatile product formation and protein labeling from methyl-labeled S-adenosylmethionine in heart, kidney, and liver, but not in testes or brain extracts. These results suggest that the incorporation of methyl groups into protein follows a complex pathway initiated by the methylation of select tyrphostins by endogenous catechol-O-methyltransferase. We suggest that the methylated tyrphostins are further modified in the cell extract and covalently attached to cellular proteins. The presence of endogenous catechols in cells suggests that similar reactions can also occur in vivo.  相似文献   

11.
Using SDS-PAAG electrophoresis with subsequent autoradiography, several proteins from plasma membranes and cell cytosol of rat kidney papillary zone were identified as substrates for endogenous cAMP-dependent protein kinases. The cAMP-dependent phosphorylation of plasma membrane proteins was made possible only after the destruction of membrane vesicles. Plasma membrane and cytosol fractions were found to contain a 58 kDa protein whose properties are similar to those of the regulatory subunit of cAMP-dependent protein kinase of the second type. It was shown also that the content of endogenous substrates of cAMP-dependent protein kinases in cell cytosol is higher than that in plasma membranes.  相似文献   

12.
H Gu  S H Park  G H Park  I K Lim  H W Lee  W K Paik  S Kim 《Life sciences》1999,65(8):737-745
Enzymatic methylation of endogenous proteins in several cancer cell lines was investigated to understand a possible relationship between protein-arginine methylation and cellular proliferation. Cytosolic extracts prepared from several cancer cells (HeLa, HCT-48, A549, and HepG2) and incubated with S-adenosyl-L-[methyl-3H]methionine revealed an intensely [methyl-3H]-labeled 20-kDa polypeptide. On the other hand, cytosolic extracts prepared from normal colon cells did not show any methylation of the 20-kDa protein under identical conditions. To identify nature of the 20-kDa polypeptide, purified histones were methylated with HCT-48 cytosolic extracts and analyzed by SDS-PAGE. However, none of the histones comigrated with the methylated 20-kDa polypeptide, indicating that it is unlikely to be any of the histone subclasses. The [methyl-3H]group in the 20-kDa polypeptide was stable at pH 10-11 (37 degrees C for 30 min) and methylation was not stimulated by GTPgammaS (4 mM), thus the reaction is neither carboxyl methylesterification on isoaspartyl residues, nor on C-terminal farnesylated cysteine. The present study together with the previous identification of N(G)-methylated arginine residues in the HCT-48 cytosol fraction suggests that this novel endogenous 20-kDa arginine-methylation is a cellular proliferation-related posttranslational modification reaction.  相似文献   

13.
Intact human erythrocytes incubated with L-[methyl-3H]methionine incorporated radioactivity into base-labile linkages with membrane and cytosolic proteins which are characteristic of protein methyl esters. Kinetic analysis of the methylation reactions in intact cells shows that individual erythrocytes contain approximately 38,000 and 115,000 protein methyl esters with biological half-lives of 150 min or less in the membrane and cytosolic protein fractions, respectively. Fractionation of the methylated cytosolic species by gel filtration chromatography at pH 6.5 followed by sodium dodecyl sulfate-gel electrophoresis at pH 2.4 reveals that many different cytosolic proteins serve as methyl acceptors and that the degree of modification varies widely for individual proteins. For example, hemoglobin is modified to the extent of 3 methyl groups/10(6) polypeptide chains, while carbonic anhydrase contains 1 methyl group/approximately 16,500 polypeptide chains at steady state. Aspartic acid beta-[3H]methyl ester (Asp beta-[3H]Me) can be isolated from carboxypeptidase Y digests of cytosol proteins. By synthesizing and separating diastereomeric L-Leu-L-Asp beta Me and L-Leu-D-Asp beta Me dipeptides, we show that all of the Asp beta-[3H]Me recovered from cytosolic proteins is in the D-stereoconfiguration. Based on these data and on previous observations that erythrocytes contain a single methyltransferase which also methylates red cell membrane proteins at D-aspartyl residues both in vivo (McFadden, P. N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2460-2464) and in vitro (O'Connor, C. M., and Clarke, S. (1983) J. Biol. Chem. 258, 8485-8492), we propose that protein carboxyl methylation is part of a generalized mechanism for metabolizing damaged proteins. The infrequent and spontaneous occurrence of D-aspartyl residues in proteins adequately explains the broad substrate specificity and limited stoichiometries of protein carboxyl methylation reactions.  相似文献   

14.
Four hexapeptides of sequence L-Val-L-Tyr-L-Pro-(Asp)-Gly-L-Ala containing D- or L-aspartyl residues in normal or isopeptide linkages have been synthesized by the Merrifield solid-phase method as potential substrates of the erythrocyte protein carboxyl methyltransferase. This enzyme has been shown to catalyze the methylation of D-aspartyl residues in proteins in red blood cell membranes and cytosol. Using a new vapor-phase methanol diffusion assay, we have found that the normal hexapeptides containing either D- or L-aspartyl residues were not substrates for the human erythrocyte methyltransferase. On the other hand, the L-aspartyl isopeptide, in which the glycyl residue was linked in a peptide bond to the beta-carboxyl group of the aspartyl residue, was a substrate for the enzyme with a Km of 6.3 microM and was methylated with a maximal velocity equal to that observed when ovalbumin was used as a methyl acceptor. The enzyme catalyzed the transfer of up to 0.8 mol of methyl groups/mol of this peptide. Of the four synthetic peptides, only the L-isohexapeptide competitively inhibits the methylation of ovalbumin by the erythrocyte enzyme. This peptide also acts as a substrate for both of the purified protein carboxyl methyltransferases I and II which have been previously isolated from bovine brain (Aswad, D. W., and Deight, E. A. (1983) J. Neurochem. 40, 1718-1726). The L-isoaspartyl hexapeptide represents the first defined synthetic substrate for a eucaryotic protein carboxyl methyltransferase. These results demonstrate that these enzymes can not only catalyze the formation of methyl esters at the beta-carboxyl groups of D-aspartyl residues but can also form esters at the alpha-carboxyl groups of isomerized L-aspartyl residues. The implications of these findings for the metabolism of modified proteins are discussed.  相似文献   

15.
1. Dimethylsulfoxide-induced differentiated neuroblastoma express high levels of membrane 21 to 23-kDa carboxyl methylated proteins. Relationships among methylation, isoprenylation, and GTP binding in these proteins were investigated. Protein carboxyl methylation, protein isoprenylation, and [alpha-32P]GTP binding were determined in the electrophoretically separated proteins of cells labeled with the methylation precursor [methyl-3H]methionine or with an isoprenoid precursor [3H]mevalonate. 2. A broad band of GTP-binding proteins, which overlaps with the methylated 21 to 23-kDa proteins, was detected in [alpha-32P]GTP blot overlay assays. This band of proteins was separated in two-dimensional gels into nine methylated proteins, of which four bound GTP. 3. The carboxyl-methylated 21 to 23-kDa proteins incorporated [3H]mevalonate metabolites with characteristics of protein isoprenylation. The label was not removed by organic solvents or destroyed by hydroxylamine. Incorporation of radioactivity from [3H]mevalonate was enhanced when endogenous levels of mevalonate were reduced by lovastatin, an inhibitor of mevalonate synthesis. Lovastatin blocked methylation of the 21 to 23-kDa proteins as well (greater than 70%). 4. Methylthioadenosine, a methylation inhibitor, inhibited methylation of these proteins (greater than 80%) but did not affect their labeling by [3H]mevalonate. The results suggest that methylation of the 21 to 23-kDa proteins depends on, and is subsequent to, isoprenylation. The sequence of events may be similar to that known in ras proteins, i.e., carboxyl methylation of a C-terminal cysteine that is isoprenylated. 5. Lovastatin reduced the level of small GTP-binding proteins in the membranes and increased GTP binding in the cytosol. Methylthioadensoine blocked methylation without affecting GTP binding. 6. Thus, isoprenylation appears to precede methylation and to be important for membrane association, while methylation is not required for GTP binding or membrane association. The role of methylation remains to be determined but might be related to specific interactions of the small GTP-binding proteins with other proteins.  相似文献   

16.
Arginine methylation in RNA-binding proteins containing arginine- and glycine-rich RGG motifs is catalyzed by specific protein arginine N-methyltransferase in cells. We previously showed that lymphoblastoid cells grown in the presence of an indirect methyltransferase inhibitor, adenosine dialdehyde (AdOx), accumulated high level of hypomethylated protein substrates for the endogenous protein methyltransferases or recombinant yeast arginine methyltransferase [Li, C. et al. (1998) Arch. Biochem. Biophys. 351, 53-59]. In this study we fractionated the lymphoblastoid cells to locate the methyltransferases and the substrates in cells. Different sets of hypomethylated methyl-accepting polypeptides with wide range of molecular masses were present in cytosolic, ribosomal, and nucleus fractions. The methylated amino acid residues of the methyl-accepting proteins in these fractions were determined. In all three fractions, dimethylarginine was the most abundant methylated amino acid. The protein-arginine methyltransferase activities in the three fractions were analyzed using recombinant fibrillarin (a nucleolar RGG protein) as the methyl-accepting substrate. Fibrillarin methylation was strongest in the presence of the cytosolic fraction, followed by the ribosomal and then the nucleus fractions. The results demonstrated that protein-arginine methyltransferases as well as their methyl-accepting substrates were widely distributed in different subcellular fractions of lymphoblastoid cells.  相似文献   

17.
The anion transport protein of the human erythrocyte membrane, band 3, is reversibly methylated by an endogenous protein carboxyl methyltransferase. The physiological consequence of this modification was studied by measuring the rate of phosphate transport by intact erythrocytes incubated under conditions where protein methylation reactions are inhibited. No change in phosphate transport was detected when cells were treated with either methionine-free media or cycloleucine, whereas cells incubated with adenosine and homocysteine thiolactone displayed a marginally slower rate of transport, which was not reversed by subsequent remethylation of the membrane proteins. These results suggest that erythrocyte protein carboxyl methylation does not directly regulate this activity of band 3.  相似文献   

18.
Abstract: Protein kinase C (PKC) activity, western blot analysis of PKCα, β, γ, ε, and ζ by isozyme-specific antibodies, and in vitro phosphorylation of endogenous substrate proteins were studied in the mice brain after pentyl-enetetrazole-induced chemoshock. The PKC isozymes and endogenous substrates in the crude cytosolic and membrane fractions were partially purified by DE-52 columns eluted with buffer A containing 100 or 200 m M KCI. This method consistently separates cytosolic and membrane proteins and various PKC isoforms. The 100 m M KCI eluates from DE-52 columns contain more PKC α and β in both cytosol and membrane than the 200 m M KCI eluates, whereas PKCγ, ε, and ζappear in equal amounts in these two eluates. The kinase activity assayed by phosphorylation of exogenous histone was increased in the chemoshocked mice in both the cytosol and membrane of 200 m M KCI eluates. In further analysis by immunoblotting, this increased activity was found to be due to the increase in content of PKC7 isozyme. As for novel-type ε and ζ isozymes, they were not altered in the chemoshocked mice. From autoradiography, the endogenous substrate 17-kDa neurogranin, which was shown below 21 kDa, was mostly eluted by 100 m M KCI from the DE-52 column, whereas 43-kDa neuromodulin, which was also demonstrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, only appeared in the 200 m M KCI eluates. The in vitro phosphorylation of neuromodulin was found to be increased in the chemoshocked mice. Therefore, the increased phosphorylation of neuromodulin and increased content of the PKCγ isoform were involved in the pentylenetetrazole-induced chemoshock.  相似文献   

19.
R Haklai  Y Kloog 《FEBS letters》1990,259(2):233-236
Evidence is presented for specific enzymatic methylation of 21-23 kDa membrane proteins in intact neuroblastoma N1E 115 cells, which is increased in dimethylsulfoxide-induced differentiated cells. Methylation of these proteins has characteristics typical of enzymatic reactions in which base labile volatile methyl groups are incorporated into proteins, consistent with the formation of protein carboxyl methylesters. However, these methylesters of the 21-23 kDa proteins are relatively stable compared to other protein carboxyl methylesters. The 3-fold increase in methylated 21-23 kDa proteins in the differentiated cells suggest biological significance in differentiation of the cell membranes.  相似文献   

20.
The subcellular distribution, kinetic properties, and endogenous substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) were examined in mouse kidney cortex. Protein kinase C associated with the particulate, mitochondrial, and brush border membrane fractions was assayed after solubilization in 0.2% Triton X-100 under conditions shown to be noninhibitory to catalytic activity. Of recovered activity, 52% was associated with the cytosolic fraction; mitochondrial and brush border membrane associated protein kinase C constituted 12 and 3%, respectively, of the activity recovered in the particulate fraction. Protein kinase C associated with brush border membranes exhibited a high affinity for ATP (apparent Km = 62 +/- 10 microM) and the highest apparent maximal velocity (1146 +/- 116 pmol P/(mg protein.min] of the renal fractions examined. Maximal stimulation of protein kinase C by diacylglycerol (in the presence of phosphatidylserine) was achieved at both 25 and 300 microM calcium in all renal fractions. These results are consistent with previous reports demonstrating that diacylglycerol increases the apparent affinity of protein kinase C for calcium. Phorbol 12-myristate 13-acetate, but not 4 alpha-phorbol, was able to substitute for diacylglycerol and stimulate cytosolic and particulate renal protein kinase C. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a specific inhibitor of protein kinase C, led to significant inhibition of catalytic activity in all renal subcellular fractions. Endogenous substrates for protein kinase C were demonstrated in renal cytosolic (26, 45, 63, and 105 kilodaltons (kDa], particulate (26, 33, 68, and 105 kDa), mitochondrial (43 kDa), and brush border membrane (26, 41, 52, 88, and 105 kDa) fractions. The possible physiological significance of protein kinase C in mammalian kidney is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号