首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
Previous studies have shown that human CD8-positive T cells activated by immobilized mAb to the CD3 complex have the capacity to support the generation of Ig secreting cells (ISC). The experiments reported here were undertaken to examine the nature of CD8+ T cell helper function in greater detail. CD8+ T cells that had been treated with mitomycin C (CD8+ mito) and stimulated by immobilized mAb to CD3 (64.1) provided help for the generation of ISC from resting B cells. By contrast, CD8+ mito did not support the generation of ISC in cultures stimulated by pokeweed mitogen (PWM). This could not be explained by differences in the production of IL2, since PWM and anti-CD3 induced comparable amounts of IL2 from CD8+ mito. In anti-CD3-stimulated cultures, CD8+ mito supported the generation of larger numbers of ISC when B cells were also activated with Staphylococcus aureus (SA). By contrast, in PWM-stimulated cultures, CD8+ mito did not provide help for SA-activated B cells. Rather, PWM-stimulated CD8+ mito appeared to suppress the generation of ISC induced by PWM-activated CD4+ mito or by SA + IL2, whereas anti-CD3-stimulated CD8+ mito did not. Only control CD8+ T cells, which were able to proliferate, exerted suppressive effects in anti-CD3-stimulated cultures. Examination of the functional capacities of a battery of CD8+ T cell clones indicated that the same clonal population of CD8+ cells could provide help or suppress responses when stimulated with anti-CD3 or PWM, respectively. The functional activities of CD8+ clones differed from those of fresh CD8+ cells. Thus, anti-CD3-stimulated CD8+ clones provided help for B cells regardless of whether they were treated with mitomycin C. Moreover, PWM stimulated suppression by CD8+ clones was abrogated by treating the clones with radiation or mitomycin C. These results indicate that helper T cell function is not limited to the CD4+ T cell population, but that help can also be provided by appropriately stimulated CD8+ T cells. Taken together, these results indicate that CD8+ T cells are not limited in their capacity to regulate B cell responses, but rather can provide positive or negative influences depending on the nature of the activating stimulus.  相似文献   

2.
The immunoregulatory functions of human T8 cell subpopulations defined by mAb to the CD45RA molecule (2H4) were examined. Both CD45RA+ and CD45RA- T8 cells that had been treated with mitomycin C provided help for the production of immunoglobulins by B cells in cultures stimulated with immobilized mAb to CD3 (64.1). In contrast, both CD45RA+ and CD45RA- T8 cells that had not been treated with mitomycin C suppressed B cell responses in anti-CD3-stimulated cultures, although CD45RA+ T8 cells were more effective in this regard. Interleukin 2 (IL2) enhanced suppression by anti-CD3-activated CD45RA- T8 cells, whereas suppression by CD45RA+ T8 cells was almost maximal and not as much increased by IL2. The differentiation into suppressor-effector cells in this system appeared to involve the production of IL2, but not the production of interferon (INF)-gamma. Thus, CD45RA+ T8 cells produced higher amounts of IL2 but lower amounts of IFN-gamma than CD45RA- T8 cells in anti-CD3-stimulated cultures. Moreover, addition of mAb to the p55 component of IL2 receptor (anti-Tac) inhibited the generation of suppressor activity from CD45RA+ and CD45RA- T8 cells. The pattern and magnitude of suppression of B cell responses by CD45RA+ and CD45RA- T4 cells were similar to that by CD45RA+ and CD45RA- T8 cells in this system. Finally, preactivated CD45RA+ T8 cells that had lost CD45RA expression suppressed the B cell responses as effectively as fresh CD45RA+ T8 cells. The results indicate that both CD45RA+ and CD45RA- T8 cells can help or suppress B cell responses. More importantly, the data suggest that the suppressor-effector function of human T cells may rather be related with the stages of the post-thymic differentiation as evidenced by the expression of the CD45RA molecule than represent the fully differentiated T cell subsets, such as T4 and T8 cells. In addition, the CD45RA molecule appeared not to be involved in the suppressor-effector function, but to determine the stage of post-thymic differentiation.  相似文献   

3.
The CD4+ helper/inducer T cell population is comprised of functionally distinct subsets identifiable by the HB11 (anti-CD45R) mAb. We have previously shown that the cells that provide help for antibody production express the CD4+CD45R- phenotype. In contrast, CD4+ CD45R+ cells have minimal, if any, helper cell functions; rather, these cells function as inducers of Ts cell activity. The lineal relationship of these phenotypically and functionally distinct CD4+ subsets is unknown. In the present studies, we have examined the hypothesis that the CD4+ subpopulations identifiable with anti-CD45R antibodies represent "virgin" or "memory" T cells sequentially derived from a common differentiation pathway but differing in their relative maturation. When freshly purified cells were tested, CD4+ CD45R+ cells had no Th cell function. However, after in vitro activation with PHA and propagation in IL-2, CD4+CD45R+ cells acquired the ability to provide help for antibody production. Moreover, this functional acquisition by these cells was accompanied by their conversion to the CD4+CD45R- phenotype. Analyses of the activation, growth kinetics, and functional dose-response characteristics of CD4+CD45R+ and CD4+CD45R- cells demonstrated that our findings did not result from the selective growth of CD4+ CD45R- cells contaminating the CD4+CD45R+ preparations. Thus, these data demonstrate that the "helper" and "suppressor-inducer" subsets of CD4+ cells identified by anti-CD45R antibodies are not comprised of fully mature, phenotypically and functionally stable T cells. Rather, these CD4+ subsets appear to represent cells at different maturational stages of an activation-dependent, post-thymic differentiation pathway.  相似文献   

4.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

5.
In vivo UV exposure of human epidermis abrogates the function of CD1+DR+ Langerhans cells and induces the appearance of CD1-DR+ Ag-presenting macrophages. Epidermal cells from UV-exposed skin, in contrast to epidermal cells from normal skin, potently activate autologous CD4+ T cells, and, in particular, the CD45RA+ (2H4+) (suppressor-inducer) subset. We therefore determined whether UV-exposure in humans leads to a T cell response in which suppression dominates. Autologous blood T cells were incubated with epidermal cell suspensions from in vivo UV-irradiated skin. After activation, repurified T cells were transferred in graded numbers to autologous mononuclear cells (MNC) stimulated with PWM and the resultant IgG production analyzed by ELISA. Relative to T cells activated by unirradiated control epidermal cells, T cells activated by UV-exposed epidermal cells demonstrated enhanced capacity to suppress IgG production (n = 6; p less than or equal to 0.03). Within the T cell population, CD8+ cells stimulated by UV-exposed epidermal cells could be directly activated to suppress PWM-stimulated MNC Ig production if IL-2 was provided in the reaction mixture. The suppressive activity was also transferable with purified CD4+ T cells stimulated by UV-exposed epidermal cells (n = 10; p less than or equal to 0.01), and was radiosensitive. Suppression was decreased when PWM-stimulated MNC were depleted of CD8+ T cells before mixing with CD4+ T cells activated by UV-exposed epidermal cells, suggesting indirect induction of CD8+ Ts cells contained within the responding MNC populations. Indeed, physical depletion of CD45RA+ cells resulted in total abrogation of the suppressor function contained in the CD4+ T cells. Activation of suppressor function was critically dependent on DR+ APC contained in UV-exposed epidermis. The data suggest that UV-exposure modulates cutaneous APC activity in humans, as in mice, such that the dominant immune response is tilted toward suppression. These mechanisms in normal individuals may function to dampen responses to UV-induced endogenous Ag that are pathogenic in autoimmune disorders. However, these mechanisms might also facilitate the growth of UV-induced skin cancers.  相似文献   

6.
Regulation of the immune response in man is largely dependent on interactions between cells of the cluster designation 4+ (CD4+) helper/inducer sublineage and the CD8+ suppressor/cytotoxic sublineage. When cultured with autologous antigen-primed CD4+ lymphocytes, CD8+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the response of fresh autologous CD4+ cells to the priming antigen only. The current study was undertaken to analyze the roles in this suppressor circuit of subpopulations of the CD4+ sublineage distinguished from one another on the basis of their binding (or lack of binding) to monoclonal antibodies against molecules p80 (Leu8) and CD45R (p220/Leu18/2H4). When examined for the proliferative responses to alloantigenic stimuli, each of the four: CD4+p80+, CD4+p80-, CD4+CD45R+, and CD4+CD45R- populations proliferated vigorously, synthesized interleukin 2 (IL-2) and interferon and released soluble IL-2 receptors. However, the responses to soluble antigens such as Candida and diphtheria toxoid were exhibited by CD4+CD45R-, CD4+p80+, and CD4+p80- cells, but not by CD4+CD45R+ cells. When examined for their ability to induced CD8+ Ts in the Candida-driven suppressor-induction culture system, only CD4+p80+ and CD4+CD45R- cells induced strong suppression. Further, when CD4+CD45R- cells were separated into CD4+CD45R-p80+ and CD4+CD45R-p80- subpopulations, despite the ability of both subpopulations to respond to Candida, only CD4+CD45R-p80+ cells induced autologous CD8+ Ts. Activated CD8+ Ts suppressed not only proliferation but also the release of soluble IL-2 receptors by autologous antigen-activated CD4+ cells. Thus, the antigen-specific suppressor-inducer T cells appear to be derived from the CD4+CD45R-p80+ (Leu3+, Leu8+, 2H4-) subpopulation of the CD4+ sublineage.  相似文献   

7.
The capacity of mAb directed at the CD3 molecular complex (64.1) to induce T cell-dependent B cell proliferation and differentiation was examined. Coculture of B cells with mitomycin C-treated T4 cells (T4 mito) stimulated by immobilized 64.1 resulted in marked B cell proliferation and Ig-secreting cells (ISC) generation in the absence of any additional stimulation. The magnitude of the B cell responses induced by immobilized 64.1-stimulated T4 mito was far greater than that induced by other stimuli, such as Staphylococcus aureus plus factors produced by mitogen-activated T cells, PWM, or soluble 64.1. The induction of maximal B cell responsiveness required direct contact between activated T cells and responding B cells. Of note, immobilized 64.1 also induced B cell proliferation and ISC generation in the presence of mitomycin C-treated T8 cells. By contrast, immobilized 64.1 stimulated T4 or T8 cells that had not been treated with mitomycin C induced very modest ISC generation and suppressed B cell responses supported by T4 mito even in the presence of exogenous IL-2 or factors produced by mitogen-activated T cells. The interactions between T and B cells in these cultures not only induced B cell responses, but also enhanced the production of IL-2 by activated T cells. Increased IL-2 production was facilitated when culture conditions afforded the opportunity for contact between B cells and activated T cells. These results indicate that the establishment of interactions between B cells and anti-CD3-stimulated T4 or T8 cells provides all of the signals necessary for proliferation and differentiation of B cells without other stimuli and also augments the production of lymphokines by the activated T cells. The data emphasize the role of Ag-nonspecific interactions between B cells and T cells in promoting polyclonal responses of both cell types.  相似文献   

8.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

9.
The subpopulation of CD4+ T cells that expresses the Leu-8 peripheral lymph node homing receptor suppresses PWM-stimulated Ig synthesis. To determine the mechanism of this suppression, the immunoregulatory activity of culture supernatants obtained from peripheral blood CD4+ Leu-8+ T cells cultured with anti-CD3 mAb and PMA (Leu-8+ supernatant) was determined. Leu-8+ supernatant suppressed PWM-stimulated Ig synthesis in cultures containing non-T cells and CD4+ Leu-8- T cells. In contrast, the supernatant from CD4+ Leu-8- T cells did not suppress Ig synthesis. The inhibitory activity of CD4+ Leu-8+ T cell supernatants could not be accounted for by a deficiency or excess of IL-2, IL-4, IFN-gamma, IL-6, or PGE2. In studies examining the effect of CD4+ Leu-8+ supernatant on T cells, the supernatant did not alter either mitogen-induced proliferation or the helper function of CD4+ Leu-8- T cells. In studies examining the effect of CD4+ Leu-8+ supernatant on B cells, the supernatant inhibited Staphylococcus aureus Cowan I strain-induced B cell Ig secretion but not B cell proliferation. The suppressor activity of Leu-8+ supernatant was eliminated by protease treatment and was eluted by HPLC in two main peaks, with molecular sizes of 44 and 12 kDa. In summary, these studies indicate that supernatants from activated CD4+ Leu-8+ T cells directly suppress B cell Ig production.  相似文献   

10.
The CD45RA and CD45RO isoforms have been reported to define complementary subsets among CD4+ T cells: CD45RA CD4+ T cells are considered "virgin T cells" and CD45RO "primed T cells." We investigated the secretion of lymphokines by human CD4+ CD45RO and CD4+ CD45RA T helper cells after mitogen stimulation. CD45RA and CD45RO CD4+ T cells were isolated by negative immunoselection using magnetic beads. CD45RO cells, but not CD45RA cells, proliferate well in response to pokeweed mitogen (PWM) or insoluble anti-CD3. Both subpopulations produced interleukin (IL)-2, IL-6, and interferon (IFN)-gamma when stimulated with PWM for 1-4 days. Only Day 1 supernatants from CD45RO cells contained moderate amounts of IL-4. After 14 days of continuous culture and stimulation with PWM, the CD45RA subset had lost the expression of CD45RA and gained that of CD45RO. When long-term cultured CD45RA or CD45RO cells were treated with insoluble anti-CD3, they incorporated [3H]thymidine at similar levels, but only CD45RO cells secreted IL-4 and significantly increased their secretion of IFN-gamma. These data indicate that despite phenotype conversion, the two subpopulations maintain functional differences in the secretion of lymphokines, thus suggesting that circulating CD45RA and CD45RO cells may represent different lines of differentiation.  相似文献   

11.
Functionally distinct subpopulations within the CD4+ subset of T lymphocytes have been described in man, rat, and mouse. In the rat different functions have been assigned to CD45R+ and CD45R- T helper cells. The CD45R+ in contrast to the CD45R- T helper cells have been reported to produce IL-2 and to proliferate well in response both to Con A and in MLR. In the present investigation the kinetics of the response to Con A by the CD45R+ and CD45R- rat T helper subsets have been analyzed. We confirm a strong proliferative response to Con A by CD4+CD45R+ rat T lymphocytes and also that they are the best IL-2 producers. We further demonstrate that CD4+CD45R- cells also produce IL-2, although in order to appreciate this production quantitatively by assays of the culture supernatants it was necessary to block IL-2 absorption by IL-2 receptor (IL-2R) antibodies. This blockage was of importance also in comparisons of the two subsets, since they showed different kinetics of IL-2R appearance. It is demonstrated that the CD4+CD45R- cells respond more rapidly to Con A than the CD4+CD45R+ cells as reflected by phenotypic conversion, IL-2 production, and proliferation. The fast response of the CD4+CD45R- T subset shown in the present study of rat cells and analogous studies of human cells suggests that the memory compartment of T cells besides other characteristics also has the capacity for a more rapid response than naive lymphocytes.  相似文献   

12.
Human peripheral blood CD8+ T cells constitutively express a low level of IL-2-R beta chains which were shown in this study to be preferentially carried by the CD45R0+ subset. Such receptors can transduce signals for in vitro IL-2-induced cytolytic function and for the initiation of soluble anti-CD3 and IL-2-induced cell proliferation. Using these stimulation models, a comparison was made between the responsiveness of resting, small CD45R0+ and CD45RA+ subpopulations of CD8+ T cells, both of them being isolated by negative selection and rigorously depleted of monocytes and of IL-2-inducible non-MHC-restricted CTL. Strong proliferation was induced in CD8+/CD45R0+ cells in response to IL-2 and soluble anti-CD3 (each of these stimuli being by itself ineffective), while in contrast, CD8+/CD45RA+ cells manifested, in this system, little reactivity. Accordingly, no conversion to the CD45R0 phenotype occurred in single stained CD45RA+ T cells following their incubation with the stimuli. A similar restriction of reactivity to CD8+/CD45R0+ T cells was observed with respect to IL-2-induced targetable T cell cytotoxicity. The CTL activity induced by IL-2 alone occurred without cell division. In contrast, the additional increase in CTL activity occurring upon the synergistic actions of anti-CD3 mAb and IL-2 coincided with intense cell proliferation, with no generation of LAK activity. The inhibition exerted by anti-IL-2-R beta mAb in the cytolytic and the proliferative activities induced by these stimuli in resting CD8+/CD45R0+ T cells emphasizes the importance of constitutive IL-2-R beta chains in the biology of these cells.  相似文献   

13.
To determine IL-2 requirement for activation of suppressor cells, PBMC were primed in one-way MLR in the presence of 10 micrograms/ml anti-IL-2R beta-chain antibody 2A3 (CD25) or control antibody, then irradiated and added as regulators in a fresh MLR. Cells primed in the presence of antibody 2A3 suppressed the proliferative response to fresh autologous lymphocytes to specific alloantigen but had no effect on the response to cells from third party donors. Priming in the presence of an antibody of irrelevant specificity induced only limited suppressor activity. Activated suppressor cells did not show cytolytic activity specific for the stimulators when tested at the time of the suppressor cell assay. To identify the subset(s) responsible for suppression, cells primed in the presence of antibody 2A3 were separated into CD4+/CD45RA+, CD4+/CD45RA-, and CD8+ subsets, which were irradiated and then tested. The suppressive activity was found predominantly in the CD4+/CD45RA+ subset, whereas CD8+ cells had some activity and CD4+/CD45RA- cells had none. No subset suppressed the response of autologous cells to third-party cells. When primed CD4+/CD45RA+ cells were cocultured with fresh autologous lymphocytes depleted of CD8+ cells, no suppression was observed, indicating that, although the CD4+/CD45RA+ cells can function as inducers of suppressors, they cannot function as suppressor-effectors. Conversely, CD8+ cells activated in MLR in the presence of 2A3 caused suppression, regardless of whether the fresh autologous responder population contained CD8+ cells. CD4+/CD45RA+ and CD8+ subsets isolated after priming in the presence of 2A3 also demonstrated Ag-specific suppression in the generation of cytotoxic T lymphocytes whereas CD4+/CD45RA- cells had no activity. Our data are consistent with the model that suppression of alloreactivity requires the cooperation of two types of cells, a CD4+/CD45RA+ suppressor-inducer and a CD8+ suppressor-effector population. Activated Tsi and fresh Tse or activated Tse alone can suppress lymphocyte proliferation and generation of CTL in response to specific Ag. Activation of Ag-specific T suppressor-inducer and T suppressor-effector cells appears to be relatively IL-2 independent and presumably require one or more other growth factors.  相似文献   

14.
Naive and memory CD4+ T helper cells can be distinguished on the basis of expression of the CD45R molecule. Whether this dichotomy applies also to CD8+ T cells has not yet been established. In the present investigation the cytolytic activity of peritoneal CD8+CD45R+ and CD8+CD45R- T cells from tumor- and allo-immunized rats has been studied. More than 90% of the CD8+ peripheral blood T lymphocytes expressed the CD45R molecule, whereas in the peritoneal cavity about 60% of the CD8+ T cells displayed the CD45R+ phenotype. Analysis of cytotoxicity of sorted peritoneal cells of W439 tumor-immunized donors demonstrated selective cytolytic activity of the CD5+CD4-CD8+CD45R+ subpopulation to W439 lymphoma target cells but no effect of CD5+CD4-CD8+CD45R- lymphocytes. None of these lymphocyte populations exhibited cytolytic activity to the NK-sensitive cell line YAC-1, whereas the CD5-CD45R+ population showed strong cytotoxicity to YAC-1 cells. In allo-immunized rats both CD5+CD4- CD8+CD45R+ and CD5+CD4-CD8+CD45R- peritoneal cells exhibited strong allo-specific cytolytic activity, but no activity to YAC-1 cells. Both CD5+CD4-CD8+CD45R+ and CD5+CD4-CD8+CD45R- cells from tumor-immunized rats proliferated in response to Con A and rIL-2. This is the first study demonstrating that tumor-selective cytolytic CD8+ T cells express the CD45R molecule and that allo-specific cytolytic CD8+ T cells are found in both the CD45R+ and CD45R- populations.  相似文献   

15.
The capacity of human T4 cells stimulated by immobilized monoclonal antibodies to the CD3 molecular complex (64.1 and OKT3) to induce and regulate B cell responsiveness was examined. T4 cells stimulated by low concentrations of immobilized 64.1 (3.0 ng/well) and all concentrations of immobilized OKT3 supported B cell proliferation and differentiation. High concentrations of immobilized 64.1 (200 ng/well) failed to stimulate help but rather induced suppression by T4 cells. Suppression was prevented by treating the T4 cells with mitomycin C. Suppression could not be accounted for by deprivation of IL-2. In contrast, induction of suppressor T4 cell activity was closely related to the amount of IL-2 produced by anti-CD3 stimulated T4 cells. Moreover, IL 2 appeared to facilitate the generation of suppressor T4 cell activity. Suppressor cell activity could be generated from unseparated T4 cells as well as from highly purified T4 cell subsets, including Leu 8-, CD45R+, and CD45R- T4 cells, after stimulation with immobilized 64.1. A primary action of suppressor T4 cells appeared to be the direct inhibition of B cell function, as evidenced by the finding that immobilized anti-CD3 activated T4 cells directly suppressed B cell responses stimulated by Staphylococcus aureus and IL-2. Anti-CD3 activated T4 cells did not inhibit initial B cell activation, but suppressed the capacity of the activated B cells to differentiate into ISC. The suppressive influence of anti-CD3 activated T4 cells was reversible as evidenced by the finding that removal of the activated T4 cells from the culture permitted B cell differentiation to proceed. Moreover, anti-CD3-activated T4 cells were able to stimulate initial B cell activation that became apparent when the T cells and B cells were separated. Inhibition of B cell responsiveness by 64.1-activated T4 cells was the result of a block at the G1-S interphase of the cell cycle. The data indicate that anti-CD3-stimulated T4 cells directly and reversibly suppress human B cell function. Moreover, IL 2 appears to play an important role in the differentiation of functionally effective suppressor cells from activated T4 cells.  相似文献   

16.
Murine CD3+,CD4-,CD8- peripheral T cells, which express various forms of the TCR-gamma delta on their cell surface, have been characterized in terms of their cell-surface phenotype, proliferative and lytic potential, and lymphokine-producing capabilities. Three-color flow cytofluorometric analysis demonstrated that freshly isolated CD3+,CD4-, CD8- TCR-gamma delta lymph node cells were predominantly Thy-1+,CD5dull,IL-2R-,HSA-,B220-, and approximately 70% Ly-6C+ and 70% Pgp-1+. After CD3+,CD4-,CD8-splenocytes were expanded for 7 days in vitro with anti-CD3-epsilon mAb (145-2C11) and IL-2, the majority of the TCR-gamma delta cells expressed B220 and IL-2R, and 10 to 20% were CD8+. In comparison to CD8+ TCR-alpha beta T cells, the population of CD8+ TCR-gamma delta-bearing T cells exhibited reduced levels of CD8, and about 70% of the CD8+ TCR-gamma delta cells did not express Lyt-3 on the cell surface. Functional studies demonstrated that splenic TCR-gamma delta cells proliferated when stimulated with mAb directed against CD3-epsilon, Thy-1, and Ly-6C, but not when incubated with an anti-TCR V beta 8 mAb, consistent with the lack of TCR-alpha beta expression. In addition, activated CD3+,CD4-,CD8- peripheral murine TCR-gamma delta cells were capable of lysing syngeneic FcR-bearing targets in the presence of anti-CD3-epsilon mAb and the NK-sensitive cell line, YAC-1, in the absence of anti-CD3-epsilon mAb. Finally, activated CD3+, CD4-,CD8-,TCR-gamma delta+ splenocytes were also capable of producing IL-2, IL-3, IFN-gamma, and TNF when stimulated in vitro with anti-CD3-epsilon mAb.  相似文献   

17.
Activation of T cells by mAb to the CD3 molecular complex induces the differentiation of many more Ig-secreting cells (ISC) from resting human B cells in bulk cultures than do other modes of polyclonal B cell activation. In the current experiments, a limiting dilution assay was used to demonstrate that this increase in ISC generation reflects an increased frequency of responding B cells. Highly purified B cells were cultured at densities of between 1000 cells and 0.5 cell per microwell with fresh, mitomycin C-treated T cells (T mito) or T cell clones stimulated by immobilized mAb to CD3. After 5 days in culture, the number of wells containing ISC was determined, and the frequency of responding B cells was calculated. The proportion of B cells responding to anti-CD3-stimulated T cells was very large (10.7 +/- 2.8%) and greatly surpassed that induced by other polyclonal activators. B cells cultured with anti-CD3-stimulated T cell clones responded better than did those cultured with T mito. The addition of exogenous IL-2 or IL-6 to cultures supported by activated T mito enhanced the frequency of responding B cells, whereas IL-4 did not increase the generation of ISC and inhibited the augmentation of B cell responses induced by IL-2. Supplementation of cultures with mitomycin C-treated B cells as accessory cells had less of an effect. The addition of both accessory cells and IL-2 markedly increased B cell responsiveness, with precursor frequencies of 60 to 80% noted. In some experiments, cultures were carried out for 7 to 14 days and supernatants were analyzed for IgM, IgG, and IgA secretion. B cells activated by anti-CD3-stimulated T cells produced all three Ig isotypes. When the classes of Ig produced by single B cells were examined, it was observed that the stimulation of individual B cell precursors led to the production of multiple Ig isotypes, suggesting that isotype switching occurs in these cultures. These results demonstrate that under optimum culture conditions, T cells stimulated with immobilized anti-CD3 can activate the majority of human peripheral blood B cells to produce Ig and induce isotype switching by many.  相似文献   

18.
Four different subpopulations (Ly6Cneg, Ly6Clow, Ly6Cint, and Ly6Chi) of CD8+ T cells were arbitrarily defined on the basis of differential expression of Ly6C Ag. By combining the processes of electronic cell sorting and automated cell deposition, small numbers of respective CD8+ T cell subpopulations were directly deposited into tissue culture wells in which mitogen-stimulated responses were studied. Anti-CD3-stimulated proliferation and IL-2 production were the strongest by Ly6Cneg/Ly6Clow T cells, moderate for Ly6Cint T cells, and highly deficient for Ly6Chi T cells. The level of IL-2 production for Ly6Cneg CD8+ T cells was comparable to that of conventional CD4+ Th cells. Allogeneic stimulator cells elicited a strong cytotoxic response by Ly6Cneg + low but not Ly6Chi CD8+ T cells in the absence of added lymphokines. When IL-2 was supplied in excess, anti-CD3 induced comparable levels of cell proliferation and cytotoxic activity in Ly6Cneg, Ly6Clow, Ly6Cint, and Ly6Chi CD8+ T cells whereas alloantigen stimulated an approximate fivefold higher cytotoxic response by Ly6Chi than Ly6Cneg + low CD8+ T cells. Stimulation of co-cultures of B10 (CD8b) Ly6Cneg + low and congenic B10.CD8a Ly6Chi CD8+ T cells in the absence of added lymphokines, followed by selective elimination of activated CD8.1+ (CD8.2+) T cells by anti-CD8.1 (anti-CD8.2) + C treatment, allowed the demonstration that help provided by Ly6Cneg + low T cells can be effectively used by both Ly6Cneg + low and Ly6Chi T cells in anti-CD3 and alloantigen induced proliferative and cytotoxic responses, respectively.  相似文献   

19.
Although CD8+ IL-2Rbeta (CD122)+ T cells with intermediate TCR reportedly develop extrathymically, their functions still remain largely unknown. In the present study, we characterized the function of CD8+ CD122+ T cells with intermediate TCR of C57BL/6 mice. The proportion of CD8+ CD122+ T cells in splenocytes gradually increased with age, whereas CD8+ IL-2Rbeta-negative or -low (CD122-) T cells conversely decreased. The IFN-gamma production from splenocytes stimulated with immobilized anti-CD3 Ab in vitro increased with age, whereas the IL-4 production decreased. When sorted CD8+ CD122+ T cells were stimulated in vitro by the anti-CD3 Ab, they promptly produced a much larger amount of IFN-gamma than did CD8+ CD122- T cells or CD4+ T cells, whereas only CD4+ T cells produced IL-4. The depletion of CD8+ CD122+ T cells from whole splenocytes greatly decreased the CD3-stimulated IFN-gamma production and increased the IL-4 production, whereas the addition of sorted CD8+ CD122+ T cells to CD8+ CD122+ T cell-depleted splenocytes restored the IFN-gamma production and partially decreased IL-4 production. It is of interest that CD8+ CD122+ T cells stimulated CD4+ T cells to produce IFN-gamma. The CD3-stimulated IFN-gamma production from each T cell subset was augmented by macrophages. Furthermore, CD3-stimulated CD8+ CD122+ T cells produced an even greater amount of IFN-gamma than did liver NK1.1+ T cells and also showed antitumor cytotoxicity. These results show that CD8+ CD122+ T cells may thus be an important source of early IFN-gamma production and are suggested to be involved in the immunological changes with aging.  相似文献   

20.
The functional distinction between CD45RA+ and CD45RO+ cells within the human CD4+ T cell subset is well established. This study was undertaken to investigate whether a similar division can be made within the CD8+ T cell population. A quantitative comparison was made of the requirements for activation and differentiation of CD8+CD45RA+ and CD8+CD45RO+ cells. Stimulation of T lymphocytes with anti-CD3 mAb immobilized at high-density induced strong proliferation and CTL activity in both CD45RA+ and CD45RO+ cells. Suboptimal TCR/CD3 triggering, in contrast, induced substantially higher levels of proliferation and CTL activity in CD8+CD45RO+ cells compared with their CD45RA+ counterparts. Lymphokine secretion (i.e., Il-2 and TNF-alpha) was under any condition more readily induced in CD8+CD45RO+ cells. Markedly, proliferation of both CD8+CD45RA+ and CD8+CD45RO+ T cells initiated by anti-CD3 mAb immobilized at high densities was not inhibited by addition of anti-CD25 mAb, in contrast to proliferation induced by suboptimal anti-CD3 mAb concentrations. These findings show that a functional division between CD45RA+ and CD45RO+ T cells with distinct requirements for activation and differentiation may also be made in the CD8+ subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号