首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Leucine-rich repeat-containing 8 (LRRC8) proteins are composed of four transmembrane helices and 17 leucine-rich repeats (LRR). Although LRRC8 proteins have been associated with important processes, like maturation of B cells or adipocyte differentiation, their biology and molecular function are largely unknown. We found that LRRC8 proteins originated from the combination of a pannexin and an LRR domain (most likely related to the SHOC2, LAP, RSU1 and LRRIQ4 protein families) before the diversification of chordates. We propose that, like pannexins, LRRC8 proteins form hexameric channels, which participate in cell-cell communication processes. According to the inferred topological model, and contrary to what was previously assumed, the six LRR domains are located in the cytoplasm, and could participate in the organisation of signalling cascades. By compiling available proteomics and gene expression data, and on the basis of the LRRC8 proposed hexameric channel structure, we present clues to the function of this family.  相似文献   

2.
Members of the LRRC8 family participate in the response of vertebrate cells to osmotic changes in their environment. These proteins form heteromeric assemblies composed of the obligatory subunit LRRC8A and at least one of the other four homologs, which together function as anion-selective channels with distinct properties that are activated upon cell-swelling. The hexameric complexes share a conserved architecture consisting of a membrane-inserted pore domain with an ion permeation path located at the axis of symmetry and cytoplasmic leucine-rich repeat domains that regulate the open probability of the channel. In this review, we summarize the current understanding of structure–function relationships of these unusual ion channels whose mechanisms are, despite their large physiological importance, still poorly understood.  相似文献   

3.
LRRC4, leucine-rich repeat C4 protein, has been identified in human (GenBank accession No. AF196976), mouse (GenBank accession No. DQ177325), rat (GenBank accession No. DQ119102) and bovine (GenBank accession No. DQ 164537) with identical domains. In terms of their similarity, the genes encoding LRRC4 in these four mammalian species are orthogs and therefore correspond to the same gene entity. Based on previous research, and using in situ hybridization, we found that LRRC4 had the strongest expression in hippocampal CA1 and CA2, the granule cells of the dentate gyrus region, the mediodoral thalamic nucleus, and cerebella Purkinje cell layers. Using a P19 cell model, we also found that LRRC4 participates in the differentiation of neuron and glia cells. In addition, extracellular proteins containing both an LRR cassette and immunoglobulin domains have been shown to participate in axon guidance. Our data from neurite outgrowth assays indicated that LRRC4 promoted neurite extension of hippocampal neurons, and induced differentiation of glioblastoma U251 cells into astrocyte-like cells, confirmed by morphology observation and glial fibrillary acidic protein expression.  相似文献   

4.
The tumor suppressor p53 regulates diverse biological processes primarily via activation of downstream target genes. Even though many p53 target genes have been described, the precise mechanisms of p53 biological actions are uncertain. In previous work we identified by microarray analysis a candidate p53 target gene, FLJ11259/DRAM. In this report we have identified three uncharacterized human proteins with sequence homology to FLJ11259, suggesting that FLJ11259 is a member of a novel family of proteins with six transmembrane domains. Several lines of investigation confirm FLJ11259 is a direct p53 target gene. p53 siRNA prevented cisplatin-mediated up-regulation of FLJ11259 in NT2/D1 cells. Likewise in HCT116 p53+/+ cells and MCF10A cells, FLJ11259 is induced by cisplatin treatment but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element was identified 22.3 kb upstream of the first coding exon of FLJ11259 and is shown to be active in reporter assays. In addition, chromatin immunoprecipitation assays indicate that p53 binds directly to this element in vivo and that binding is enhanced following cisplatin treatment. Confocal microscopy showed that an FLJ-GFP fusion protein localizes mainly in a punctate pattern in the cytoplasm. Overexpression studies in Cos-7, Saos2, and NT2/D1 cells suggest that FLJ11259 is associated with increased clonal survival. In summary, we have identified FLJ11259/DRAM as a p53-inducible member of a novel family of transmembrane proteins. FLJ11259/DRAM may be an important modulator of p53 responses in diverse tumor types.  相似文献   

5.
We have identified a new functional transmembrane receptor, LRRC19 (leucine-rich repeat containing 19), that belongs to the LRR protein family. LRRC19’s central core has four analogous LRR repeating modules in a juxtaposed array and a casein kinase (CK2) phosphorylation site in the cytoplasmic domain. LRRC19 mRNA was found in the kidney, spleen and intestine of adult mice using both RT-PCR and in situ hybridization. LRRC19 does not contain a cytoplasmic Toll/IL-1 receptor (TIR) domain but was able to activate NF-κB and induce production of proinflammatory cytokines. LRRC19 shares a close evolutionary relationship with multiple Toll-like receptors (TLRs), especially TLR3. Importantly, the TLR3 ligand, as well as other TLR ligands, significantly promoted the expression of proinflammatory cytokines and the activation of NF-κB by LRRC19. Thus, LRRC19 may play an important role in inducing innate immune responses in certain tissues such as the kidney.  相似文献   

6.
Leucine-rich repeat-containing 8 (LRRC8) proteins have been identified as putative receptors involved in lymphocyte development and adipocyte differentiation. They remain poorly characterized, and no specific function has been assigned to them. There is no consensus on how this family of proteins might function because homology searches suggest that members of the LRRC8 family act not as plasma membrane receptors, but rather as channels that mediate cell-cell signaling. Here we provide experimental evidence that supports a role for LRRC8s in the transport of small molecules. We show that LRRC8D is a mammalian protein required for the import of the antibiotic blasticidin S. We characterize localization and topology of LRRC8A and LRRC8D and demonstrate that LRRC8D interacts with LRRC8A, LRRC8B, and LRRC8C. Given the suggested involvement in solute transport, our results support a model in which LRRC8s form one or more complexes that may mediate cell-cell communication by transporting small solutes.  相似文献   

7.
The tumor suppressor p53 regulates diverse biological processes primarily via activation of downstream target genes. Even though many p53 target genes have been described, the precise mechanisms of p53 biological actions are uncertain. In previous work we identified by microarray analysis a candidate p53 target gene, FLJ11259/DRAM. In this report we have identified three uncharacterized human proteins with sequence homology to FLJ11259, suggesting that FLJ11259 is a member of a novel family of proteins with six transmembrane domains. Several lines of investigation confirm FLJ11259 is a direct p53 target gene. p53 siRNA prevented cisplatin-mediated up-regulation of FLJ11259 in NT2/D1 cells. Likewise in HCT116 p53+/+ cells and MCF10A cells, FLJ11259 is induced by cisplatin treatment but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element was identified 22.3 kb upstream of the first coding exon of FLJ11259 and is shown to be active in reporter assays. In addition, chromatin immunoprecipitation assays indicate that p53 binds directly to this element in vivo and that binding is enhanced following cisplatin treatment. Confocal microscopy showed that an FLJ-GFP fusion protein localizes mainly in a punctate pattern in the cytoplasm. Overexpression studies in Cos-7, Saos2, and NT2/D1 cells suggest that FLJ11259 is associated with increased clonal survival. In summary, we have identified FLJ11259/DRAM as a p53-inducible member of a novel family of transmembrane proteins. FLJ11259/DRAM may be an important modulator of p53 responses in diverse tumor types.  相似文献   

8.
Our previous study has shown that LRRC4 is a novel member of the leucine-rich repeat (LRR) superfamily and has the potential to suppress brain tumor growth. In order to further analyze the functions of LRRC4 on the maintenance of normal function and suppression of tumorigenesis in the central nervous system, we investigated alterations in gene expression related to neurobiology by the Atlas array in two inducible dual-stable LRRC4-overexpressing cell lines. Seventeen of 588 genes spotted on the Atlas membrane showed altered expression levels in LRRC4 transfected U251MG Tet-on cells, which are involved in cell proliferation and cell cycle progression, tumor invasion and metastasis, and neurotransmitter synthesis and release. In addition, cell invasion assay results showed that LRRC4 can inhibit the U251MG cell migration. These studies represent the first cDNA array analysis of the effects of LRRC4 on the involvement of different neurobiological genes in U251MG glioblastoma cells and provide new insights into the function of LRRC4 in glioma.  相似文献   

9.
In the sequences released by the Arabidopsis Genome Initiative (AGI), we have discovered a new large gene family (48 genes as of July 2000). A detailed computational and biochemical analysis of the predicted gene products reveals a novel family of plant F-box proteins, where the amino (N)-terminal F-box motif is followed by four kelch repeats and a characteristic carboxy-terminal domain. F-box proteins are an expanding family of eukaryotic proteins, which have been shown in some cases to be critical for the controlled degradation of cellular regulatory proteins via the ubiquitin pathway. The F-box motif of the At5g48990 gene product, a member of the family, was shown to be functionally active by its ability to mediate the in vitro interaction between At5g48990 and ASK1 proteins. F-box proteins specifically recruit the targets to be ubiquitinated, mainly through protein-protein interaction modules such as WD-40 domains or leucine-rich repeats (LRRs). The kelch repeats of the family described here form a potential protein-protein interaction domain, as molecular modelling of the kelch repeats according to the galactose oxidase crystal structure (the only solved structure containing kelch repeats) predicts a -propeller. The identification of this family of F-box proteins greatly expands the field of plant F-box proteins and suggests that controlled degradation of cellular proteins via the ubiquitin pathway could play a critical role in multiple plant cellular processes.  相似文献   

10.
LRRC8 proteins have been shown to underlie the ubiquitous volume regulated anion channel (VRAC). VRAC channels are composed of the LRRC8A subunit and at least one among the LRRC8B-E subunits. In addition to their role in volume regulation, LRRC8 proteins have been implicated in the uptake of chemotherapeutic agents. We had found that LRRC8 channels can be conveniently expressed in Xenopus oocytes, a system without endogenous VRAC activity. The fusion with fluorescent proteins yielded constitutive activity for A/C, A/D and A/E heteromers. Here we tested the effect of the anticancer drug cisplatin on LRRC8A-VFP/8E-mCherry and LRRC8A-VFP/8D-mCherry co-expressing oocytes. Incubation with cisplatin dramatically activated currents for both subunit combinations, confirming that VRAC channels provide an uptake pathway for cisplatin and that intracellular cisplatin accumulation strongly activates the channels. Thus, specific activators of LRRC8 proteins might be useful tools to counteract chemotherapeutic drug resistance.  相似文献   

11.
Accepted as a malignant tumor worldwide, cervical cancer (CC) has attracted much attention for its high incidence and mortality rates. Previous studies have elucidated the critical regulatory function that long noncoding RNAs (lncRNAs) exert on the tumorigenesis and progression of diverse tumors. Although multiple investigations have depicted that LINC00958 has a great impact on the complex biological process of many cancers, knowledge concerning the regulatory role of LINC00958 in CC remains limited and needs to be further explored. In our study, LINC00958 expression was evidently overexpressed in CC tissues and cells. Besides this, LINC00958 negatively regulated miR-625-5p expression and was verified to bind with miR-625-5p in CC. Subsequently, it was testified by a series of experiments that LINC00958 promotes CC cell proliferation and metastasis by sponging miR-625-5p. Furthermore, the leucine-rich repeat containing the eight family member E (LRRC8E) could bind with miR-625-5p, and its expression was negatively modulated by miR-625-5p, whereas positively regulated by LINC00958 in CC. Final rescue assays verified the effects of LINC0095/LRRC8E interaction and miR-625-5p/LRRC8E interaction on CC cell proliferation and metastasis. Collectively, LINC00958 facilitates CC cell proliferation and metastasis via the miR-625-5p/LRRC8E axis.  相似文献   

12.
ABSTRACT

Under acute hypoxia, multiple ion channels on the cell membrane are activated, causing cell swelling and eventually necrosis. LRRC8A is an indispensable protein of the volume-regulated anion channel (VRAC), which participates in swelling and the acceleration of cell necrosis. In this study, we revealed a dynamic change in the expression level of the LRRC8 family during hypoxia in 3T3-L1 cells. The disruption of LRRC8A in 3T3-L1 cells was also associated with a significant anti-necrotic phenotype upon hypoxia accompanied by the reduced expression of necrosis-related genes. In vivo, differential expression of LRRC8 family members was also identified between high-altitude pigs and their low-altitude relatives. Taken these findings together, this study demonstrates the involvement of LRRC8A in hypoxia-induced cell necrosis.  相似文献   

13.
14.
We report here characterization of five genes for novel components of the canonical Wnt/ β -catenin signaling pathway. These genes were identified in the ascidian Ciona intestinalis through a loss-of-function screening for genes required for embryogenesis with morpholinos, and four of them have counterparts in vertebrates. The five genes we studied are as follows: Ci-PGAP1 , a Ciona orthologue of human PGAP1 , which encodes GPI (glycosylphosphatidylinositol) inositol-deacylase, Ci-ZF278 , a gene encoding a C2H2 zinc-finger protein, Ci-C10orf11 , a Ciona orthologue of human C10orf11 that encodes a protein with leucine-rich repeats, Ci-Spatial/C4orf17 , a single counterpart for two human genes Spatial and C4orf17 , and Ci-FLJ10634 , a Ciona orthologue of human FLJ10634 that encodes a member of the J-protein family. Knockdown of each of the genes mimicked β -catenin knockdown and resulted in suppression of the expression of β -catenin downstream genes ( Ci-FoxD , Ci-Lhx3 , Ci-Otx and Ci-Fgf9/16/20 ) and subsequent endoderm formation. For every gene, defects in knockdown embryos were rescued by overexpression of a constitutively active form, but not wild-type, of Ci- β -catenin. Dosage-sensitive interactions were found between Ci-β-catenin and each of the genes. These results suggest that these five genes act upstream of or parallel to Ci- β -catenin in the Wnt/ β -catenin signaling pathway in early Ciona embryos.  相似文献   

15.
Adipocyte differentiation is known to be regulated by a complex array of genes known as master regulators. Using a subtraction method, we previously isolated 102 genes that are expressed in the early stage of adipocyte differentiation. One of these genes named fad158 (factor for adipocyte differentiation 158) seems to be a novel gene, since there is no significantly similar gene listed in databases. Both mouse and human fad158 encode 803 amino acids and contain 4 transmembrane regions and 8 leucine-rich repeat motifs. Expression of fad158 was induced at an early stage in differentiating 3T3-L1 cells and was observed in the skeletal muscle. When the expression was knocked down with an antisense method in 3T3-L1 cells, the accumulation of oil droplets was reduced. Moreover, on overexpression of fad158 in NIH-3T3 cells, which are fibroblasts and do not usually differentiate into adipocytes, stable transformants accumulated oil droplets and showed an elevated expression of adipocyte marker genes, indicating that these cells had differentiated into mature adipocytes. fad158 has the ability to regulate adipocyte differentiation positively, especially at an early stage.  相似文献   

16.
17.
Nogo-66 receptor (NgR) has recently been identified as the neuronal receptor of the myelin-associated proteins Nogo-A, oligodendrocyte protein (OMgp) and myelin-associated glycoprotein (MAG), and mediates inhibition of axonal regeneration both in vitro and in vivo. Through database searches, we have identified two novel proteins (NgRH1 and NgRH2) that turned out to be homologous in their primary structures, biochemical properties and expression patterns to NgR. Like NgR, the homologues contain eight leucine-rich repeats (LRR) flanked by a leucine-rich repeat C-terminus (LRRCT) and a leucine-rich repeat N-terminus (LRRNT), and also have a C-terminal GPI signal sequence. Northern blot analysis showed predominant expression of NgRH1 and NgRH2 mRNA in the brain. In situ hybridization and immunohistochemistry on rat brain slices revealed neuronal expression of the genes. NgRH1 and NgRH2 were detected on the cell surface of recombinant cell lines as N-glycosylated GPI anchored proteins and, consistent with other GPI anchored proteins, were localized within the lipid rafts of cellular membranes. In addition, an N-terminal proteolytic fragment of NgR comprising the majority of the ectodomain was found to be constitutively secreted from cells. Our data indicate that NgR, NgRH1 and NgRH2 constitute a novel receptor protein family, which may play related roles within the CNS.  相似文献   

18.
BackgroundUrothelial carcinoma (UC) is one of the most common cancers worldwide. The biological heterogeneity of UCs causes considerable difficulties in predicting treatment outcomes and usually leads to clinical mismanagement. The identification of more sensitive and efficient predictive biomarkers is important in the diagnosis and classification of UCs. Herein, we report leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel predictive factor and potential therapeutic target for UCs.MethodsUsing whole-slide image analysis in our cohort of 107 UC samples, we performed immunohistochemistry to evaluate the prognostic value of LRRC59 expression in UCs. In vitro experiments using RNAi were conducted to explore the role of LRRC59 in promoting UC cell proliferation and migration.ResultsA significant correlation between LRRC59 and unfavorable prognosis of UCs in our cohort was demonstrated. Subsequent clinical analysis also revealed that elevated expression levels of LRRC59 were significantly associated with higher pathological grades and advanced stages of UC. Subsequently, knockdown of LRRC59 in UM-UC-3 and T24 cells using small interfering RNA significantly inhibited cell proliferation and migration, resulting in cell cycle arrest at the G1 phase. Conversely, the overexpression of LRRC59 in UC cells enhanced cell proliferation and migration. An integrated bioinformatics analysis revealed a significant functional network of LRRC59 involving protein misfolding, ER stress, and ubiquitination. Finally, in vitro experiments demonstrated that LRRC59 modulates ER stress signaling.ConclusionsLRRC59 expression was significantly correlated with UC prognosis. LRRC59 might not only serve as a novel prognostic biomarker for risk stratification of patients with UC but also exhibit as a potential therapeutic target in UC that warrants further investigation.  相似文献   

19.
Volume- and acid-sensitive outwardly rectifying anion channels (VSOR and ASOR) activated by swelling and acidification exhibit voltage-dependent inactivation and activation time courses, respectively. Recently, LRRC8A and some paralogs were shown to be essentially involved in the activity and inactivation kinetics of VSOR currents in human colonic HCT116 cells. In human cervix HeLa cells, here, inactivation of VSOR currents was found to become accelerated by RNA silencing only of LRRC8A but never decelerated by that of any LRRC8 isoform. These data suggest that LRRC8A is associated with the deceleration mechanism of VSOR inactivation, while none of LRRC8 members is related to the acceleration mechanism. Activation kinetics of ASOR currents was unaffected by knockdown of any LRRC8 family member. Double, triple and quadruple gene-silencing studies indicated that combinatory expression of LRRC8A with LRRC8D and LRRC8C is essential for VSOR activity, whereas none of LRRC8 family members is involved in ASOR activity.  相似文献   

20.
Kurusu M  Cording A  Taniguchi M  Menon K  Suzuki E  Zinn K 《Neuron》2008,59(6):972-985
In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号