首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
HIV-1 matrix protein (MA) is multifunctional structural protein located on N-terminus of Gag precursor p55 and responsible for its transport to plasma membrane, the site of virus assembly. Here, it has been shown that MA is cleaved from Gag precursor at early stage of the virus infection and participates in virus assembly. MA is transported into the nuclei wherein it associates with viral RNA (vRNA). The MA-vRNA complex is transported to plasma membrane. Mutant MA which lost its membranotropic signal does not reach plasma membrane and MA-vRNA complex remains in the nuclei and cytoskeleton. Thus, MA seems to deliver vRNA from the nuclei to plasma membrane through cytoskeleton initiating virus assembly.  相似文献   

3.
HIV-1 matrix protein (MA) is a multifunctional structural protein located on the N-terminus of Gag precursor p55 and is responsible for its transport to the plasma membrane, the site of virus assembly. In the present paper, it has been shown that MA is cleaved from Gag precursor at an early stage of the virus infection and participates in virus assembly. MA is transported into the nuclei wherein it associates with viral RNA (vRNA). The MA-vRNA complex is transported to the plasma membrane. Mutant MA, which lost its membranotropic signal, does not reach the plasma membrane and MA-vRNA complex remains in the nuclei and cytoskeleton. Thus, MA seems to deliver vRNA from the nuclei to plasma membrane through the cytoskeleton, initiating virus assembly.  相似文献   

4.
A unique feature of retroviruses is the packaging of two copies of their genome, noncovalently linked at their 5' ends. In vitro, dimerization of human immunodeficiency virus type 2 (HIV-2) RNA occurs by interaction of a self-complementary sequence exposed in the loop of stem-loop 1 (SL-1), also termed the dimer initiation site (DIS). However, in virions, HIV-2 genome dimerization does not depend on the DIS. Instead, a palindrome located within the packaging signal (Psi) is the essential motif for genome dimerization. We reported previously that a mutation within Psi decreasing genome dimerization and packaging also resulted in a reduced proportion of mature particles (A. L'Hernault, J. S. Greatorex, R. A. Crowther, and A. M. Lever, Retrovirology 4:90, 2007). In this study, we investigated further the relationship between HIV-2 genome dimerization, particle maturation, and infectivity by using a series of targeted mutations in SL-1. Our results show that disruption of a purine-rich ((392)-GGAG-(395)) motif within Psi causes a severe reduction in genome dimerization and a replication defect. Maintaining the extended SL-1 structure in combination with the (392)-GGAG-(395) motif enhanced packaging. Unlike that of HIV-1, which can replicate despite mutation of the DIS, HIV-2 replication depends critically on genome dimerization rather than just packaging efficiency. Gag processing was altered in the HIV-2 dimerization mutants, resulting in the accumulation of the MA-CA-p2 processing intermediate and suggesting a link between genome dimerization and particle assembly. Analysis of revertant SL-1 mutant viruses revealed that a compensatory mutation in matrix (70TI) could rescue viral replication and partially restore genome dimerization and Gag processing. Our results are consistent with interdependence between HIV-2 RNA dimerization and the correct proteolytic cleavage of the Gag polyprotein.  相似文献   

5.
6.
Encapsidation of HIV-1 genomic RNA is mediated by specific interactions between the RNA packaging signal and the Gag protein. During maturation of the virion, the Gag protein is processed into smaller fragments, including the nucleocapsid (NC) domain which remains associated with the viral genomic RNA. We have investigated the binding of glutathione- S -transferase (GST) Gag and NC fusion proteins from HIV-1, to the entire HIV-1 and -2 leader RNAencompassing the packaging signal. We have mapped the binding sites at conditions where only about two complexes are formed and find that GST-Gag and GST-NC fusion proteins bind specifically to discrete sites within the leader. Analysis of the HIV-1 leader indicated that GST-Gag strongly associates with the PSI stem-loop and to a lesser extent with regions near the primer binding site. GST-NC binds the same regions but with reversed preferences. The HIV-1 proteins also interact specifically with the 5'-leader of HIV-2 and the major site of interaction mapped to a stem-loop, with homology to the HIV-1 PSI stem-loop structure. The different specificities of Gag and NC may reflect functionally distinct roles in the viral replication, and suggest that the RNA binding specificity of NC is modulated by its structural context.  相似文献   

7.
The major RNA binding region of the HIV-1 Gag polyprotein is the nucleocapsid (NC) domain, which is responsible for the specific capture of the genomic RNA genome during viral assembly. The Gag polyprotein has other RNA chaperone functions, which are mirrored by the isolated NC protein after physiological cleavage from Gag. Gag, however, is suggested to have superior nucleic acid chaperone activity. Here we investigate the interaction of Gag and NC with the core RNA structure of the HIV-1 packaging signal (Ψ), using 2-aminopurine substitution to create a series of modified RNAs based on the Ψ helix loop structure. The effects of 2-aminopurine substitution on the physical and structural properties of the viral Ψ were characterized. The fluorescence properties of the 2-aminopurine substitutions showed features consistent with the native GNAR tetraloop. Dissociation constants (K(d)) of the two viral proteins, measured by fluorescence polarization (FP), were similar, and both NC and Gag affected the 2-aminopurine fluorescence of bases close to the loop binding region in a similar fashion. However, the influence of Gag on the fluorescence of the 2-aminopurine nucleotides at the base of the helix implied a much more potent helix destabilizing action on the RNA stem loop (SL) versus that seen with NC. This was further supported when the viral Ψ SL was tagged with a 5' fluorophore and 3' quencher. In the absence of any viral protein, minimal fluorescence was detected; addition of NC yielded a slight increase in fluorescence, while addition of the Gag protein yielded a large change in fluorescence, further suggesting that, compared to NC, the Gag protein has a greater propensity to affect RNA structure and that Ψ helix unwinding may be an intrinsic step in RNA encapsidation.  相似文献   

8.
Anderson EC  Lever AM 《Journal of virology》2006,80(21):10478-10486
The full-length viral RNA of human immunodeficiency virus type 1 (HIV-1) functions both as the mRNA for the viral structural proteins Gag and Gag/Pol and as the genomic RNA packaged within viral particles. The packaging signal which Gag recognizes to initiate genome encapsidation is in the 5' untranslated region (UTR) of the HIV-1 RNA, which is also the location of translation initiation complex formation. Hence, it is likely that there is competition between the translation and packaging processes. We studied the ability of Gag to regulate translation of its own mRNA. Gag had a bimodal effect on translation from the HIV-1 5' UTR, stimulating translation at low concentrations and inhibiting translation at high concentrations in vitro and in vivo. The inhibition was dependent upon the ability of Gag to bind the packaging signal through its nucleocapsid domain. The stimulatory activity was shown to depend on the matrix domain of Gag. These results suggest that Gag controls the equilibrium between translation and packaging, ensuring production of enough molecules of Gag to make viral particles before encapsidating its genome.  相似文献   

9.
10.
Lee EG  Linial ML 《Journal of virology》2004,78(16):8486-8495
The Orthoretrovirus Gag interaction (I) domain maps to the nucleocapsid (NC) domain in the Gag polyprotein. We used the yeast two-hybrid system to analyze the role of Alpharetrovirus NC in Gag-Gag interactions and also examined the efficiency of viral assembly and release in vivo. We could delete either or both of the two Cys-His (CH) boxes without abrogating Gag-Gag interactions. We found that as few as eight clustered basic residues, attached to the C terminus of the spacer peptide separating the capsid (CA) and NC domains in the absence of NC, was sufficient for Gag-Gag interactions. Our results support the idea that a sufficient number of basic residues, rather than the CH boxes, play the important role in Gag multimerization. We also examined the requirement for basic residues in Gag for packaging of specific packaging signal (Psi)-containing RNA. Using a yeast three-hybrid RNA-protein interaction assay, second-site suppressors of a packaging-defective Gag mutant were isolated, which restored Psi RNA binding. These suppressors mapped to the p10 or CA domains in Gag and resulted in either introduction of a positively charged residue or elimination of a negatively charged one. These results imply that the structural interactions of NC with other domains of Gag are necessary for Psi RNA binding. Taken together, our results show that while Gag assembly only requires a certain number of positively charged amino acids, Gag binding to genomic RNA for packaging requires more complex interactions inherent in the protein tertiary structure.  相似文献   

11.
The Gag protein of the mouse mammary tumor virus (MMTV) is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV), assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A) resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.  相似文献   

12.
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells.  相似文献   

13.
The interaction between HIV-1 Gag and APOBEC3G   总被引:24,自引:0,他引:24  
  相似文献   

14.
HIV-2, a human pathogen that causes acquired immunodeficiency syndrome, is distinct from the more prevalent HIV-1 in several features including its evolutionary history and certain aspects of viral replication. Like other retroviruses, HIV-2 packages two copies of full-length viral RNA during virus assembly and efficient genome encapsidation is mediated by the viral protein Gag. We sought to define cis-acting elements in the HIV-2 genome that are important for the encapsidation of full-length RNA into viral particles. Based on previous studies of murine leukemia virus and HIV-1, we hypothesized that unpaired guanosines in the 5′ untranslated region (UTR) play an important role in Gag:RNA interactions leading to genome packaging. To test our hypothesis, we targeted 18 guanosines located in 9 sites within the HIV-2 5′ UTR and performed substitution analyses. We found that mutating as few as three guanosines significantly reduce RNA packaging efficiency. However, not all guanosines examined have the same effect; instead, a hierarchical order exists wherein a primary site, a secondary site, and three tertiary sites are identified. Additionally, there are functional overlaps in these sites and mutations of more than one site can act synergistically to cause genome packaging defects. These studies demonstrate the importance of specific guanosines in HIV-2 5′UTR in mediating genome packaging. Our results also demonstrate an interchangeable and hierarchical nature of guanosine-containing sites, which was not previously established, thereby revealing key insights into the replication mechanisms of HIV-2.  相似文献   

15.
Retroviral RNA encapsidation depends on the specific binding of Gag proteins to packaging (psi) signals in genomic RNA. We investigated whether an in vitro-selected, high-affinity RNA ligand for the nucleocapsid (NC) portion of the Gag protein from human immunodeficiency virus type 1 (HIV-1) could mediate packaging into HIV-1 virions. We find that this ligand can functionally substitute for one of the Gag-binding elements (termed SL3) in the HIV-1 psi locus to support packaging and viral infectivity in cis. By contrast, this ligand, which fails to dimerize spontaneously in vitro, is unable to replace a different psi element (termed SL1) which is required for both Gag binding and dimerization of the HIV-1 genome. A single point mutation within the ligand that eliminates high-affinity in vitro Gag binding also abolishes its packaging activity at the SL3 position. These results demonstrate that specific binding of Gag or NC protein is a critical determinant of genomic RNA packaging.  相似文献   

16.
To produce progeny virus, human immunodeficiency virus type I (HIV-1) Gag assembles into capsids that package the viral genome and bud from the infected cell. During assembly of immature capsids, Gag traffics through a pathway of assembly intermediates (AIs) that contain the cellular adenosine triphosphatase ABCE1 (ATP-binding cassette protein E1). In this paper, we showed by coimmunoprecipitation and immunoelectron microscopy (IEM) that these Gag-containing AIs also contain endogenous processing body (PB)-related proteins, including AGO2 and the ribonucleic acid (RNA) helicase DDX6. Moreover, we found a similar complex containing ABCE1 and PB proteins in uninfected cells. Additionally, knockdown and rescue studies demonstrated that the RNA helicase DDX6 acts enzymatically to facilitate capsid assembly independent of RNA packaging. Using IEM, we localized the defect in DDX6-depleted cells to Gag multimerization at the plasma membrane. We also confirmed that DDX6 depletion reduces production of infectious HIV-1 from primary human T cells. Thus, we propose that assembling HIV-1 co-opts a preexisting host complex containing cellular facilitators such as DDX6, which the virus uses to catalyze capsid assembly.  相似文献   

17.
Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging.  相似文献   

18.
P P Lee  M L Linial 《Journal of virology》1994,68(10):6644-6654
Lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), assemble at and bud through the cytoplasmic membrane. Both the matrix (MA) domain of Gag and its amino-terminal myristylation have been implicated in these processes. We have created HIV-1 proviruses lacking the entire matrix domain of gag which either lack or contain an amino-terminal myristate addition sequence at the beginning of the capsid domain. Myristate- and matrix-deficient [myr(-)MA(-)] viruses produced after transient transfection are still able to assemble into particles, although the majority do not form at the plasma membrane or bud efficiently. Myristylation of the amino terminus of the truncated Gag precursor permits a much more efficient release of the mutant virions. While myr(-)MA(-) particles were inefficient in proteolytic processing of the Gag precursor, myristylation enabled efficient proteolysis of the mutant Gag. All matrix-deficient viruses are noninfectious. Particles produced by matrix-deficient mutants contain low levels of glycoproteins, indicating the importance of matrix in either incorporation or stable retention of Env. Since matrix-deficient viruses contain a normal complement of viral genomic RNA, a role for MA in genomic incorporation can be excluded. Contrary to previous reports, the HIV-1 genome does not require sequences between the 5' splice donor site and the gag start codon for efficient packaging.  相似文献   

19.
20.
Steric-block ON analogues are efficient inhibitors of RNA-protein interaction and therefore have potential to probe RNA sequences for putative protein binding sites and to investigate mechanisms of protein binding. The packaging process of HIV-1 is highly specific involving an interaction between the Gag protein and a conserved sequence that is only present on genomic viral RNA. Using oligonucleotide probes we have confirmed that the terminal purine loop is the major Gag binding site on SL3 and that a secondary Gag binding site exists at an internal purine bulge. We also demonstrate direct binding of oligonucleotide to their binding sites and confirm this interaction does not alter global RNA conformation, making them highly specific, nondisruptive probes of RNA protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号