首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the 5' nontranslated region in the replication of hepatitis A virus (HAV) was studied by analyzing the translation and replication of chimeric RNAs containing the encephalomyocarditis virus (EMCV) internal ribosome entry segment (IRES) and various lengths (237, 151, or 98 nucleotides [nt]) of the 5'-terminal HAV sequence. Translation of all chimeric RNAs, truncated to encode only capsid protein sequences, occurred with equal efficiency in rabbit reticulocyte lysates and was much enhanced over that exhibited by the HAV IRES. Transfection of FRhK-4 cells with the parental HAV RNA and with chimeric RNA generated a viable virus which was stable over continuous passage; however, more than 151 nt from the 5' terminus of HAV were required to support virus replication. Single-step growth curves of the recovered viruses from the parental RNA transfection and from transfection of RNA containing the EMCV IRES downstream of the first 237 nt of HAV demonstrated replication with similar kinetics and similar yields. When FRhK-4 cells infected with recombinant vaccinia virus producing SP6 RNA polymerase to amplify HAV RNA were transfected with plasmids coding for these viral RNAs or with subclones containing only HAV capsid coding sequences downstream of the parental or chimeric 5' nontranslated region, viral capsid antigens were synthesized from the HAV IRES with an efficiency equal to or greater than that achieved with the EMCV IRES. These data suggest that the inherent translation efficiency of the HAV IRES may not be the major limiting determinant of the slow-growth phenotype of HAV.  相似文献   

2.
The genome of hepatitis A virus (HAV) was reverse transcribed into cDNA and molecularly cloned. cDNA clones coding for the capsid protein VP1 that carries the major HAV antigen were cloned into the expression vector pUR290 and expressed in Escherichia coli. The recombinant fusion protein reacted in an immunoblot with rabbit anti-HAV serum, suggesting that it possesses HAV antigenicity.  相似文献   

3.
4.
A E Smith  R Kamen  W F Mangel  H Shure  T Wheeler 《Cell》1976,9(3):481-487
The 19S and 16S polyoma virus late mRNAs have been separated on sucrose-formamide density gradients and translated in vitro. The 16S RNA codes only for polyoma capsid protein VP1, while the 19S RNA codes in addition for capsid protein VP2. Since the 19S and 16S species have been previously mapped on the viral genome, these results allow us to deduce the location of the sequences coding for VP1 and VP2. Comparison of the chain lengths of the capsid proteins with the size of the viral mRNAs coding for them suggests that VP1 and VP2 are entirely virus-coded. Purified polyoma 19S RNA directs the synthesis of very little VP1 in vitro, although it contains all the sequences required to code for the protein. The initiation site for VP1 synthesis which is located at an internal position on the messenger is probably inactive either because it is inaccessible or because it lacks an adjacent "capped" 5' terminus. Similar inactive internal initiation sites have been reported for other eucarotic viral mRNAs (for example, Semliki forest virus, Brome mosaic virus, and tobacco mosaic virus), suggesting that while eucaryotic mRNAs may have more than one initiation site for protein synthesis, only those sites nearer the 5' terminus of the mRNA are active.  相似文献   

5.
Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated replicon RNA from virus stocks after 21 serial passages of the replicon genomes with VV-P1 indicated that the replicon which contained the VP4 coding region was present at a higher level than the replicon which contained a complete substitution of the P1 capsid sequences. These differences in encapsidation, though, were not detected after only two serial passages of the replicons with VV-P1 or upon coinfection and serial passage with type 1 Sabin poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Type 1 wild-vaccine recombinant polioviruses were isolated from poliomyelitis patients in China from 1991 to 1993. We compared the sequences of 34 recombinant isolates over the 1,353-nucleotide (nt) genomic interval (nt 2480 to 3832) encoding the major capsid protein, VP1, and the protease, 2A. All recombinants had a 367-nt block of sequence (nt 3271 to 3637) derived from the Sabin 1 oral poliovirus vaccine strain spanning the 3'-terminal sequences of VP1 (115 nt) and the 5' half of 2A (252 nt). The remaining VP1 sequences were closely (up to 99.5%) related to those of a major genotype of wild type 1 poliovirus endemic to China up to 1994. In contrast, the non-vaccine-derived sequences at the 3' half of 2A were more distantly related (<90% nucleotide sequence match) to those of other contemporary wild polioviruses from China. The vaccine-derived sequences of the earliest (April 1991) isolates completely matched those of Sabin 1. Later isolates diverged from the early isolates primarily by accumulation of synonymous base substitutions (at a rate of approximately 3.7 x 10(-2) substitutions per synonymous site per year) over the entire VP1-2A interval. Distinct evolutionary lineages were found in different Chinese provinces. From the combined epidemiologic and evolutionary analyses, we propose that the recombinant virus arose during mixed infection of a single individual in northern China in early 1991 and that its progeny spread by multiple independent chains of transmission into some of the most populous areas of China within a year of the initiating infection.  相似文献   

7.
In an infectious poliovirus cDNA construct, the determinant encoding antigenic epitope N-Ag1 (in a loop located between two beta-strands in poly-peptide VP1) was altered by site-directed mutagenesis, to be partially similar with the determinants for presumptive epitopes in polypeptides VP1 or VP3 of hepatitis A virus (HAV). The modified constructs proved to be infectious. However, another construct, in which the same locus encoded a 'nonsense' and a relatively hydrophobic amino acid sequence, exhibited no infectivity. These data showed the feasibility of the insertion of foreign sequences in a specific antigenically active locus of the poliovirus icosahedron, and suggest some limitations with respect to the sequences to be 'transplanted'.  相似文献   

8.
Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase.  相似文献   

9.
A cDNA library was constructed from white spot syndrome virus (WSSV)-infected penaeid shrimp tissue. cDNA clones with WSSV inserts were isolated and sequenced. By comparison with DNA sequences in GenBank, cDNA clones containing sequence identical to those of the WSSV envelope protein VP28 and nucleoprotein VP15 were identified. Poly(A) sites in the mRNAs of VP28 and VP15 were identified. Genes encoding the major viral structural proteins VP28, VP26, VP24, VP19 and VP15 of 5 WSSV isolates collected from different shrimp species and/or geographical areas were sequenced and compared with those of 4 other WSSV isolate sequences in GenBank. For each of the viral structural protein genes compared, the nucleotide sequences were 100 to 99% identical among the 9 isolates. Gene probes or PCR primers based on the gene sequences of the WSSV structural proteins can be used for diagnoses and/or detection of WSSV infection.  相似文献   

10.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

11.
A trans-encapsidation assay was established to study the specificity of picornavirus RNA encapsidation. A poliovirus replicon with the luciferase gene replacing the capsid protein-coding region was coexpressed in transfected HeLa cells with capsid proteins from homologous or heterologous virus. Successful trans-encapsidation resulted in assembly and production of virions whose replication, upon subsequent infection of HeLa cells, was accompanied by expression of luciferase activity. The amount of luciferase activity was proportional to the amount of trans-encapsidated virus produced from the cotransfection. When poliovirus capsid proteins were supplied in trans, >2 × 106 infectious particles/ml were produced. When coxsackievirus B3, human rhinovirus 14, mengovirus, or hepatitis A virus (HAV) capsid proteins were supplied in trans, all but HAV showed some encapsidation of the replicon. The overall encapsidation efficiency of the replicon RNA by heterologous capsid proteins was significantly lower than when poliovirus capsid was used. trans-encapsidated particles could be completely neutralized with specific antisera against each of the donor virus capsids. The results indicate that encapsidation is regulated by specific viral nucleic acid and protein sequences.  相似文献   

12.
Comparative surface feature analyses of the VP1 sequences of hepatitis A virus (HAV) and poliovirus type 1 allowed an alignment of the two sequences and an identification of probable HAV neutralization antigenic sites. A synthetic peptide containing the HAV-specific amino acid sequence of one of these sites induced anti-HAV-neutralizing antibodies. It is concluded that a structural homology exists between the two viruses, despite minimal primary sequence conservation.  相似文献   

13.
Using nuclease Bal31, deletions were generated within the poliovirus type 1 cDNA sequences, coding for capsid polypeptide VP1, within plasmid pCW119. The fusion proteins expressed in Escherichia coli by the deleted plasmids reacted with rabbit immune sera directed against poliovirus capsid polypeptide VP1 (alpha VP1 antibodies). They also reacted with a poliovirus type 1 neutralizing monoclonal antibody C3, but reactivity was lost when the deletion extended up to VP1 amino acids 90-104. Computer analysis of the protein revealed a high local density of hydrophilic amino acid residues in the region of VP1 amino acids 93-103. A peptide representing the sequence of this region was chemically synthesized. Once coupled to keyhole limpet hemocyanin, this peptide was specifically immunoprecipitated by C3 antibodies. The peptide also inhibited the neutralization of poliovirus type 1 by C3 antibodies. We thus conclude that the neutralization epitope recognized by C3 is located within the region of amino acids 93-104 of capsid polypeptide VP1.  相似文献   

14.
The poliovirus P2/P712 strain is an attenuated virus that is closely related to the type 2 Sabin vaccine strain. By using a mouse model for poliomyelitis, sequences responsible for attenuation of the P2/P712 strain were previously mapped to the 5' noncoding region of the genome and a central region encoding VP1, 2Apro, 2B, and part of 2C. To identify specific determinants that attenuate the P2/P712 strain, recombinants between this virus and the mouse-adapted P2/Lansing were constructed and their neurovirulence in mice was determined. By using this approach, the attenuation determinant in the central region was mapped to capsid protein VP1. Candidate attenuating sequences in VP1 and the 5' noncoding region were identified by comparing the P2/P712 sequence with that of vaccine-associated isolate P2/P117, and the P2/117 sequences were introduced into the P2/Lansing-P2/P712 recombinants by site-directed mutagenesis. Results of neurovirulence assays in mice indicate that an A at nucleotide 481 in the 5' noncoding region and isoleucine (Ile) at position 143 of capsid protein VP1 are the major determinants of attenuation of P2/P712. These determinants also attenuated neurovirulence in transgenic mice expressing human poliovirus receptors, a new model for poliomyelitis in which virulent viruses are not host restricted. These results demonstrate that A-481 and Ile-143 are general determinants of attenuation.  相似文献   

15.
DNA sequences coding for the immunogenic capsid protein VP1 and/or VP3 of poliovirus strain LSc-2ab (Sabin 1) were prepared by digesting the cloned complementary DNA with restriction endonuclease PstI. The DNA fragments were inserted into the unique PstI site of Escherichia coli plasmid vectors pBR322, pKT 280 and/or pKT 287 that lay in the region expressed under control of the penicillinase promoter system. In the expression vectors, poliovirus sequences were designed to be read in phase and therefore to be expressed as fusion proteins with the bacterial peptides. In addition, the Escherichia coli tryptophan operon promoter-operator system was inserted upstream of the penicillinase system to obtain stronger expression of the poliovirus sequences. Escherichia coli transformed with these plasmids appeared to produce the antigenic polypeptides, which were detected by immunoprecipitation with antibodies to capsid proteins VP1 and/or VP3 followed by SDS-polyacrylamide gel electrophoresis.  相似文献   

16.
Gene Order of the Poliovirus Capsid Proteins   总被引:17,自引:14,他引:3       下载免费PDF全文
Two methods were used to determine the genetic map of the poliovirus capsid proteins. The first method uses pactamycin, a drug which selectively inhibits the initiation of protein synthesis and causes a change in the relative amounts of capsid proteins synthesized. This differential effect on each of the capsid proteins is interpreted as indicating the relative distance of each protein from the initiation site of protein synthesis. The second method involves an analysis of coat precursor molecules released from polyribosomes after a series of short pulses of different length terminated by addition of emetine, a drug which stops all protein synthesis almost immediately after its addition. As the pulse length is increased, each of the capsid proteins within the precursor gains radioactivity with different kinetics. From these kinetics, it is possible to determine the gene order of the capsid proteins within the precursor as well as a rate of protein synthesis. Both methods indicate a gene order for the region of the ribonucleic acid coding for the capsid proteins as (5' --> 3') VP 4 - VP 2 - VP 3 - VP 1.  相似文献   

17.
Intracerebral inoculation of mice with poliovirus type 2 Lansing induces a fatal paralysis, while most other poliovirus strains are unable to cause disease in the mouse. To determine the molecular basis for Lansing virus neurovirulence, we determined the complete nucleotide sequence of the Lansing viral genome from cloned cDNA. The deduced amino acid sequence was compared with that of two mouse-avirulent strains. There are 83 amino acid differences between the Lansing and Sabin type 2 strain and 179 differences between the Lansing and Mahoney type 1 strain scattered throughout the genome. To further localize Lansing sequences important for mouse neurovirulence, four intertypic recombinants were isolated by exchanging DNA restriction fragments between the Lansing 2 and Mahoney 1 infectious poliovirus cDNA clones. Plasmids were transfected into HeLa cells, and infectious recombinant viruses were recovered. All four recombinant viruses, which contained the Lansing capsid region and different amounts of the Mahoney genome, were neurovirulent for 18- to 21-day-old Swiss-Webster mice by the intracerebral route. The genome of neurovirulent recombinant PRV5.1 contained only nucleotides 631 to 3413 from Lansing, encoding primarily the viral capsid proteins. Therefore, the ability of Lansing virus to cause paralysis in mice is due to the viral capsid. The Lansing capsid sequence differs from that of the mouse avirulent Sabin 2 strain at 32 of 879 amino acid positions: 1 in VP4, 5 in VP2, 4 in VP3, and 22 in VP1.  相似文献   

18.
The complete nucleotide sequences of the genomes of the type 2 ( P712 , Ch, 2ab ) and type 3 (Leon 12a1b ) poliovirus vaccine strains were determined. Comparison of the sequences with the previously established genome sequence of type 1 (LS-c, 2ab ) poliovirus vaccine strain revealed that 71% of the nucleotides in the genome RNAs were common, that the 5' and 3' termini of the genomes were highly homologous, and that more than 80% of the nucleotide differences in the coding region occurred in the third letter position of in-phase codons, resulting in a low frequency of amino acid difference. These results strongly suggested that the serotypes of poliovirus derived from a common prototype. A comparison of the amino acid sequences predicted from the genome sequences showed highest variation in the capsid protein region, whereas non-structural proteins are highly conserved. Initiation of polyprotein synthesis occurs in all three strains more than 740 nucleotides downstream from the 5' end. An analysis of the non-coding region suggests that small peptides that could potentially originate from this region are conserved. The amino acid sequences immediately surrounding the cleavage signals, however, show a higher than average degree of variation. The analysis of the amino acid sequences of the capsid protein VP1 of all serotypes has led to the prediction of potential antigenic sites on the virion involved in neutralization.  相似文献   

19.
A poliovirus replicon, FLC/REP, which incorporates the reporter gene chloramphenicol acetyltransferase (CAT) in place of the region encoding the capsid proteins VP4, VP2, and part of VP3 in the genome of poliovirus type 3, has been constructed. Transfection of cells indicates that the FLC/REP replicon replicates efficiently and that active CAT enzyme is produced as a CAT-VP3 fusion protein. The level of CAT activity in transfected cells broadly reflects the level of FLC/REP RNA. A series of mutations in the 5' noncoding region of poliovirus type 3 were introduced into FLC/REP, and their effects were monitored by a simple CAT assay. These experiments helped to define further the stem-loop structures in the 5' noncoding region which are essential for RNA replication. The CAT-containing poliovirus replicon could also be packaged into poliovirus capsids provided by helper virus and was stable as a subpopulation of virus particles over at least four passages. The location of the CAT gene in FLC/REP excluded the presence of an encapsidation signal in the region of the poliovirus genome comprising nucleotides 756 to 1805.  相似文献   

20.
The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg2+. In this paper, the effect of Zn2+ on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg2+. Phosphorylation patterns of viral and other proteins depend on the divalent cation present. In the presence of Zn2+, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. Our results indicate the activation of more than one virus-associated protein kinase by Zn2+. The ion-dependent behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn2+. The destabilization leads to a substantially increased permeability of virus particles to ethidium bromide and RNase, concomitant with decreased infectivity of the sample. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. High-performance liquid chromatography-purified viral protein VP2 is phosphorylated by the released enzymes on serine, threonine, and tyrosine in the presence of Zn2+. We suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号