首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
Metapopulation models that incorporate both spatial and temporal structure are studied in this paper. The existence and stability of equilibria are provided, and an extinction threshold condition is derived which depends on patch dynamics (patch destruction and creation) and metapopulation dynamics (patch colonization and extinction). These results refine threshold conditions given by previous metapopulation models. By comparing landscapes with different spatial heterogeneities with respect to weighted long-term patch occupancies, we conclude that the pattern of a landscape is of overwhelming importance in determining metapopulation persistence and patch occupancy. We show that the same conclusion holds when a rescue effect is considered. We also derive a stochastic differential equations (SDE) model of the It? type based on our deterministic model. Our simulations reveal good agreement between the deterministic model and the SDE model.  相似文献   

2.
Circadian rhythms are endogenous oscillations that occur with a period close to 24 h in nearly all living organisms. These rhythms originate from the negative autoregulation of gene expression. Deterministic models based on such genetic regulatory processes account for the occurrence of circadian rhythms in constant environmental conditions (e.g., constant darkness), for entrainment of these rhythms by light-dark cycles, and for their phase-shifting by light pulses. When the numbers of protein and mRNA molecules involved in the oscillations are small, as may occur in cellular conditions, it becomes necessary to resort to stochastic simulations to assess the influence of molecular noise on circadian oscillations. We address the effect of molecular noise by considering the stochastic version of a deterministic model previously proposed for circadian oscillations of the PER and TIM proteins and their mRNAs in Drosophila. The model is based on repression of the per and tim genes by a complex between the PER and TIM proteins. Numerical simulations of the stochastic version of the model are performed by means of the Gillespie method. The predictions of the stochastic approach compare well with those of the deterministic model with respect both to sustained oscillations of the limit cycle type and to the influence of the proximity from a bifurcation point beyond which the system evolves to stable steady state. Stochastic simulations indicate that robust circadian oscillations can emerge at the cellular level even when the maximum numbers of mRNA and protein molecules involved in the oscillations are of the order of only a few tens or hundreds. The stochastic model also reproduces the evolution to a strange attractor in conditions where the deterministic PER-TIM model admits chaotic behaviour. The difference between periodic oscillations of the limit cycle type and aperiodic oscillations (i.e. chaos) persists in the presence of molecular noise, as shown by means of Poincaré sections. The progressive obliteration of periodicity observed as the number of molecules decreases can thus be distinguished from the aperiodicity originating from chaotic dynamics. As long as the numbers of molecules involved in the oscillations remain sufficiently large (of the order of a few tens or hundreds, or more), stochastic models therefore provide good agreement with the predictions of the deterministic model for circadian rhythms.  相似文献   

3.
Density-independent and density-dependent, stochastic and deterministic, discrete-time, structured models are formulated, analysed and numerically simulated. A special case of the deterministic, density-independent, structured model is the well-known Leslie age-structured model. The stochastic, density-independent model is a multitype branching process. A review of linear, density-independent models is given first, then nonlinear, density-dependent models are discussed. In the linear, density-independent structured models, transitions between states are independent of time and state. Population extinction is determined by the dominant eigenvalue λ of the transition matrix. If λ ≤ 1, then extinction occurs with probability one in the stochastic and deterministic models. However, if λ > 1, then the deterministic model has exponential growth, but in the stochastic model there is a positive probability of extinction which depends on the fixed point of the system of probability generating functions. The linear, density-independent, stochastic model is generalized to a nonlinear, density-dependent one. The dependence on state is in terms of a weighted total population size. It is shown for small initial population sizes that the density-dependent, stochastic model can be approximated by the density-independent, stochastic model and thus, the extinction behavior exhibited by the linear model occurs in the nonlinear model. In the deterministic models there is a unique stable equilibrium. Given the population does not go extinct, it is shown that the stochastic model has a quasi-stationary distribution with mean close to the stable equilibrium, provided the population size is sufficiently large. For small values of the population size, complete extinction can be observed in the simulations. However, the persistence time increases rapidly with the population size. This author received partial support by the National Science Foundation grant # DMS-9626417.  相似文献   

4.
Stochastic differential equations that model an SIS epidemic with multiple pathogen strains are derived from a system of ordinary differential equations. The stochastic model assumes there is demographic variability. The dynamics of the deterministic model are summarized. Then the dynamics of the stochastic model are compared to the deterministic model. In the deterministic model, there can be either disease extinction, competitive exclusion, where only one strain persists, or coexistence, where more than one strain persists. In the stochastic model, all strains are eventually eliminated because the disease-free state is an absorbing state. However, if the population size and the initial number of infected individuals are sufficiently large, it may take a long time until all strains are eliminated. Numerical simulations of the stochastic model show that coexistence cases predicted by the deterministic model are an unlikely occurrence in the stochastic model even for short time periods. In the stochastic model, either disease extinction or competitive exclusion occur. The initial number of infected individuals, the basic reproduction numbers, and other epidemiological parameters are important determinants of the dominant strain in the stochastic epidemic model.  相似文献   

5.
Simulations of models of epidemics, biochemical systems, and other bio-systems show that when deterministic models yield damped oscillations, stochastic counterparts show sustained oscillations at an amplitude well above the expected noise level. A characterization of damped oscillations in terms of the local linear structure of the associated dynamics is well known, but in general there remains the problem of identifying the stochastic process which is observed in stochastic simulations. Here we show that in a general limiting sense the stochastic path describes a circular motion modulated by a slowly varying Ornstein–Uhlenbeck process. Numerical examples are shown for the Volterra predator–prey model, Sel’kov’s model for glycolysis, and a damped linear oscillator.  相似文献   

6.
The dynamics of the Min-protein system help Escherichia coli regulate the process of cell division by identifying the center of the cell. While this system exhibits robust bipolar oscillations in wild-type cell shapes, recent experiments have shown that when the cells are mechanically deformed into wide, flattened out, irregular shapes, the spatial regularity of these oscillations breaks down. We employ widely used stochastic and deterministic models of the Min system to simulate cells with flattened shapes. The deterministic model predicts strong bipolar oscillations, in contradiction with the experimentally observed behavior, while the stochastic model, which is based on the same reaction-diffusion equations, predicts more spatially irregular oscillations. We further report simulations of flattened but more symmetric shapes, which suggest that the flattening and lateral expansion may contribute as much to the irregular oscillation behavior as the asymmetry of the cell shapes.  相似文献   

7.
Metapopulation theory has generally focused only on the stochastic turn-over rate among populations and assumed that the number and location of suitable habitat patches will remain constant through time. This study combines in a PVA both the deterministic landscape dynamics and the stochastic colonisations and extinctions of populations for the butterfly Lopinga achine in Sweden. With data on occupancy pattern and the rate of habitat change, we built a simulation model and examined five different scenarios with different assumptions of landscape changes for L. achine . If no landscape changes would be expected, around 80 populations are predicted to persist during the next 100 yr. Adding the knowledge that many of the sites are unmanaged and that the host plant will slowly deteriorate as canopies close over, and adding environmental variation and synchrony, showed that the number of populations will decrease to around of 4.3 and 2.8 respectively, with an extinction risk of 34% – quite different from the first scenario based only on the metapopulation model. This study has shown the importance of incorporating both deterministic and stochastic events when making a reliable population viability analysis. Even though one can not expect that the long-term predictions of either occupied patches or extinction risks will be accurate quantitatively, the qualitative implications are correct. The extinction risk will be high if grazing is not applied to more patches than is the case today. The simulations indicate that an absolute minimum of 10–30 top-ranked patches needs to be managed for the persistence of the metapopulation of L. achine in the long term. The same problem of abandoned and overgrowing habitats affects many other threatened species in the European landscape and a similar approach could also be applied to them.  相似文献   

8.
We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton–Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.  相似文献   

9.
Circadian rhythms which occur with a period close to 24 h in nearly all living organisms originate from the negative autoregulation of gene expression.Deterministic models based on genetic regulatory processes account for theoccurrence of circadian rhythms in constant environmental conditions (e.g.constant darkness), for entrainment of these rhythms by light-dark cycles, and for their phase-shifting by light pulses. At low numbers of protein and mRNA molecules, it becomes necessary to resort to stochastic simulations to assess the influence of molecular noise on circadian oscillations. We address the effect of molecular noise by considering two stochastic versions of a core model for circadian rhythms. The deterministic version of this core modelwas previously proposed for circadian oscillations of the PER protein in Drosophila and of the FRQ protein in Neurospora. In the first, non-developed version of the stochastic model, we introduce molecular noise without decomposing the deterministic mechanism into detailed reaction steps while in the second, developed version we carry out such a detailed decomposition. Numerical simulations of the two stochastic versions of the model are performed by means of the Gillespie method. We compare the predictions of the deterministic approach with those of the two stochastic models, with respect both to sustained oscillations of the limit cycle type and to the influence of the proximity of a bifurcation point beyond which the system evolves to a stable steady state. The results indicate that robust circadian oscillations can occur even when the numbers of mRNA and nuclear protein involved in the oscillatory mechanism are reduced to a few tens orhundreds, respectively. The non-developed and developed versions of the stochastic model yield largely similar results and provide good agreement with the predictions of the deterministic model for circadian rhythms.  相似文献   

10.
Gösta Nachman 《Oikos》2001,94(1):72-88
Predators and prey are usually heterogeneously distributed in space so that the ability of the predators to respond to the distribution of their prey may have a profound influence on the stability and persistence of a predator‐prey system. A special type of dynamics is “hide‐and‐seek” characterized by a high turnover rate of local populations of prey and predators, because once the predators have found a patch of prey they quickly overexploit it, whereupon the starving predators either should move to better places or die. Continued persistence of prey and predators thus hinges on a long‐term balance between local extinctions and founding of new subpopulations. The colonization rate depends on the rate of emigration from occupied patches and the likelihood of successfully arriving at a suitable new patch, while extinction rate depends on the local population dynamics. Since extinctions and colonizations are both discrete probabilistic events, these phenomena are most adequately modeled by means of a stochastic model. In order to demonstrate the qualitative differences between a deterministic and stochastic approach to population dynamics, a spatially explicit tritrophic predator‐prey model is developed in a deterministic and a stochastic version. The model is parameterized using data for the two‐spotted spider mite (Tetranychus urticae) and the phytoseiid mite predator Phytoseiulus persimilis inhabiting greenhouse cucumbers.
Simulations show that the deterministic and stochastic approaches yield different results. The deterministic version predicts that the populations will exhibit violent fluctuations, implying that the system is fundamentally unstable. In contrast, the stochastic version predicts that the two species will be able to coexist in spite of frequent local extinctions of both species, provided the system consists of a sufficiently large number of local populations. This finding is in agreement with experimental results. It is therefore concluded that demographic stochasticity in combination with dispersal is capable of producing and maintaining sufficient asynchrony between local populations to ensure long‐term regional (metapopulation) persistence.  相似文献   

11.
We investigate the impact of Allee effect and dispersal on the long-term evolution of a population in a patchy environment. Our main focus is on whether a population already established in one patch either successfully invades an adjacent empty patch or undergoes a global extinction. Our study is based on the combination of analytical and numerical results for both a deterministic two-patch model and a stochastic counterpart. The deterministic model has either two, three or four attractors. The existence of a regime with exactly three attractors only appears when patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis of the deterministic model shows that a high-density and a low-density populations can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic model indicates that this equilibrium is metastable, thus leading after a large random time to either a global expansion or a global extinction. Up to some critical dispersal, increasing the intensity of the interactions leads to an increase of both the basin of attraction of the global extinction and the basin of attraction of the global expansion. Above this threshold, for both the deterministic and the stochastic models, the patches tend to synchronize as the intensity of the dispersal increases. This results in either a global expansion or a global extinction. For the deterministic model, there are only two attractors, while the stochastic model no longer exhibits a metastable behavior. In the presence of strong dispersal, the limiting behavior is entirely determined by the value of the Allee thresholds as the global population size in the deterministic and the stochastic models evolves as dictated by their single-patch counterparts. For all values of the dispersal parameter, Allee effects promote global extinction in terms of an expansion of the basin of attraction of the extinction equilibrium for the deterministic model and an increase of the probability of extinction for the stochastic model.  相似文献   

12.
The persistence of a spatially structured population is determined by the rate of dispersal among habitat patches. If the local dynamic at the subpopulation level is extinction-prone, the system viability is maximal at intermediate connectivity where recolonization is allowed, but full synchronization that enables correlated extinction is forbidden. Here we developed and used an algorithm for agent-based simulations in order to study the persistence of a stochastic metapopulation. The effect of noise is shown to be dramatic, and the dynamics of the spatial population differs substantially from the predictions of deterministic models. This has been validated for the stochastic versions of the logistic map, the Ricker map and the Nicholson-Bailey host-parasitoid system. To analyze the possibility of extinction, previous studies were focused on the attractiveness (Lyapunov exponent) of stable solutions and the structure of their basin of attraction (dependence on initial population size). Our results suggest that these features are of secondary importance in the presence of stochasticity. Instead, optimal sustainability is achieved when decoherence is maximal. Individual-based simulations of metapopulations of different sizes, dimensions and noise types, show that the system''s lifetime peaks when it displays checkerboard spatial patterns. This conclusion is supported by the results of a recently published Drosophila experiment. The checkerboard strategy provides a technique for the manipulation of migration rates (e.g., by constructing corridors) in order to affect the persistence of a metapopulation. It may be used in order to minimize the risk of extinction of an endangered species, or to maximize the efficiency of an eradication campaign.  相似文献   

13.
14.
Many host‐parasite models assume that transmission increases linearly with host population density (‘density‐dependent transmission’), but various alternative transmission functions have been proposed in an effort to capture the complexity of real biological systems. The most common alternative (usually applied to sexually transmitted parasites) assumes instead that the rate at which hosts contact one another is independent of population density, leading to ‘frequency‐dependent’ transmission. This straight‐forward distinction generates fundamentally different dynamics (e.g. deterministic, parasite‐driven extinction with frequency‐ but not density‐dependence). Here, we consider the situation where transmission occurs through two different types of contact, one of which is density‐dependent (e.g. social contacts), the other density‐independent (e.g. sexual contacts). Drawing on a range of biological examples, we propose that this type of contact structure may be widespread in natural populations. When our model is characterized mainly by density‐dependent transmission, we find that allowing even small amounts of transmission to occur through density‐independent contacts leads to the possibility of deterministic, parasite‐driven extinction (and lowers the threshold for parasite persistence). Contrastingly, allowing some density‐dependent transmission to occur in a model characterized mainly by density‐independent contacts (i.e. by frequency‐dependent transmission) does not affect the extinction threshold, but does increase the likelihood of parasite persistence. The idea that directly transmitted parasites exploit different types of host contact is not new, but here we show that the impact on dynamics can be fundamental even in the simplest cases. For example, in systems where density‐dependent transmission is normally assumed de facto, we show that parasite‐driven extinction can occur if a small amount of transmission occurs through density‐independent contacts. Many empirical studies are still guided by the traditional density/frequency dichotomy, but our combined transmission function may provide a better model for systems in which both types of transmission occur.  相似文献   

15.
 The aim of this study is to derive an asymptotic expression for the probability that an infectious disease will disappear from a population at the end of a major outbreak (‘fade-out’). The study deals with a stochastic SIR-model. Local asymptotic expansions are constructed for the deterministic trajectories of the corresponding deterministic system, in particular for the deterministic trajectory starting in the saddle point. The analytical expression for the probability of extinction is derived by asymptotically solving a boundary value problem based on the Fokker-Planck equation for the stochastic system. The asymptotic results are compared with results obtained by random walk simulations. Received 20 July 1995; received in revised form 6 May 1996  相似文献   

16.
The dynamics of deterministic and stochastic discrete-time epidemic models are analyzed and compared. The discrete-time stochastic models are Markov chains, approximations to the continuous-time models. Models of SIS and SIR type with constant population size and general force of infection are analyzed, then a more general SIS model with variable population size is analyzed. In the deterministic models, the value of the basic reproductive number R0 determines persistence or extinction of the disease. If R0 < 1, the disease is eliminated, whereas if R0 > 1, the disease persists in the population. Since all stochastic models considered in this paper have finite state spaces with at least one absorbing state, ultimate disease extinction is certain regardless of the value of R0. However, in some cases, the time until disease extinction may be very long. In these cases, if the probability distribution is conditioned on non-extinction, then when R0 > 1, there exists a quasi-stationary probability distribution whose mean agrees with deterministic endemic equilibrium. The expected duration of the epidemic is investigated numerically.  相似文献   

17.
General host-parasite theory suggests that parasites may be implicated in the extinction of their hosts by causing instability that leads to increased risk of stochastic extinction. In contrast, spatially explicit models suggest that the parasite may directly drive the host population to extinction. Here we examine the ecological characteristics of host-parasite interactions that favor parasite-driven host extinction. Pair approximations and simulations show that parasites only drive their hosts to extinction when they significantly reduce host reproduction. As a matter of interest, parasites that have a relatively small effect on host death rate are more likely to cause host extinction. Parasite-driven host extinction occurs at any population size, whereas extinction caused by stochastic effects is less likely to occur in large host populations. Populations may therefore be under threat from parasites that stop host reproduction, and this type of parasite may prove to be the most effective biological pesticide.  相似文献   

18.
Many non-linear deterministic models for interacting populations present damped oscillations towards the corresponding equilibrium values. However, simulations produced with related stochastic models usually present sustained oscillations which preserve the natural frequency of the damped oscillations of the deterministic model but showing non-vanishing amplitudes. The relation between the amplitude of the stochastic oscillations and the values of the equilibrium populations is not intuitive in general but scales with the square root of the populations when the ratio between different populations is kept fixed. In this work, we explain such phenomena for the case of a general epidemic model. We estimate the stochastic fluctuations of the populations around the equilibrium point in the epidemiological model showing their (approximated) relation with the mean values.  相似文献   

19.
The growth of populations which undergo large random fluctuations can be modelled with stochastic differential equations involving Poisson processes. The problem of determining the persistence time is that of finding the time of first passage to some small critical population size. We consider in detail a simple model of logistic growth with additive Poisson disasters of fixed magnitude. The expectation and variability of the persistence time are obtained as solutions of singular differential-difference equations. The dependence of the persistence time of a colonizing species on the parameters of the model is discussed. The model may also be viewed as random harvesting with fixed quotas and a comparison is made between the mean extinction time and those for deterministic models.  相似文献   

20.
Insects are known to display strategies that spread the risk of encountering unfavorable conditions, thereby decreasing the extinction probability of genetic lineages in unpredictable environments. To what extent these strategies influence the epidemiology and evolution of vector-borne diseases in stochastic environments is largely unknown. In triatomines, the vectors of the parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, juvenile development time varies between individuals and such variation most likely decreases the extinction risk of vector populations in stochastic environments. We developed a simplified multi-stage vector-borne SI epidemiological model to investigate how vector risk-spreading strategies and environmental stochasticity influence the prevalence and evolution of a parasite. This model is based on available knowledge on triatomine biodemography, but its conceptual outcomes apply, to a certain extent, to other vector-borne diseases. Model comparisons between deterministic and stochastic settings led to the conclusion that environmental stochasticity, vector risk-spreading strategies (in particular an increase in the length and variability of development time) and their interaction have drastic consequences on vector population dynamics, disease prevalence, and the relative short-term evolution of parasite virulence. Our work shows that stochastic environments and associated risk-spreading strategies can increase the prevalence of vector-borne diseases and favor the invasion of more virulent parasite strains on relatively short evolutionary timescales. This study raises new questions and challenges in a context of increasingly unpredictable environmental variations as a result of global climate change and human interventions such as habitat destruction or vector control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号