首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rutberg, Blanka (Karolinska Institutet, Stockholm, Sweden), and Lars Rutberg. Bacteriophage-induced functions in Escherichia coli K(lambda) infected with rII mutants of bacteriophage T4. J. Bacteriol. 91:76-80. 1966.-When Escherichia coli K(lambda) was infected with rII mutants of phage T4, deoxycytidine triphosphatase, one of the phage-induced early enzymes, was produced at initially the same rate as in r(+)-infected cells. Deoxyribonuclease activity was one-third to one-half of that of r(+)-infected cells. This lower deoxyribonuclease activity was observed also in other hosts or when infection was made with rI or rIII mutants. Presence of chloramphenicol did not allow a continued synthesis of phage deoxyribonucleic acid in rII-infected K(lambda). No phage lysozyme was detected nor was any antiphage serum-blocking antigen found in rII-infected K(lambda). It is suggested that the rII gene is of significance for the expression of phage-induced late functions in the host K(lambda).  相似文献   

3.
DNA fragments from lambdaspc1 and lambdafus2, carrying ribosomal protein genes from Escherichia coli, were inserted into lambda phage vectors Charon 3 and Charon 4. Eight of the resulting clones were characterized by agarose gel electrophoresis of EcoRI digests, analytical CsCl equilibrium centrifugation, and electron micrographic analysis of heteroduplexes. In each case, the identity, order, and orientation of each cloned fragment was determined. In all, 8 of the 12 EcoRI fragments of lambdafus2 were cloned in various arrangements. In the accompanying paper, genes for 15 ribosomal and related proteins and three bacterial promoters were detected in these phages. In addition, four of the hybrid phages carried fragments of lambda-DNA including the phage origin of replication (ori), the late promoter, PR', and the cohesive ends (cos site) in both orientations. The latter phages yield a circularly permuted collection of DNA molecules.  相似文献   

4.
We have constructed derivatives of plasmid pMB9 carrying EcoRI digestion fragments of bacteriophage T4 DNA that code for late gene functions. When Escherichia coli strains carrying these plasmids are infected with T4 amber mutants, burst sizes up to 30% of the wild-type level are obtained. Single burst experiments imply that the phage progeny result from complementation and do not depend on marker rescue. By electrophoretic and immunological techniques, we have established that the cloned T4 late genes are transcribed and translated in uninfected cells. A serum blocking assay has been used to quantitate the levels of one of the T4 gene products, gp11, before and after T4 infection. Uninfected cells containing the cloned T4 gene 11 DNA have 0.1% and mini cells have 1% of the gp11 levels per unit protein found in cells late after T4 wild-type infection. There is little or no additional gp10 and gp11 formed from the cloned genes after T4 infection.  相似文献   

5.
R G Nivinskas 《Genetika》1988,24(1):34-41
An attempt has been made to clone six BglII fragments of T4 DNA in the range of 3.3-8.1 kb in the vector plasmid pSCC31 containing a single BglII site within the gene for endonuclease EcoRI and pL promoter of phage lambda. DNA fragments were extracted from the corresponding bands of agarose gel. The following BglII fragments were cloned: the 3.3 kb fragment No. 9 containing a portion of gene 20, the gene 21 and a portion of gene 22; the 4.2 kb fragment No. 8.1 with genes 17, 18, 19 and a portion of gene 20; the 5.2 kb fragment No. 7.1 with genes 25-29 and a portion of gene 48. In the case of the fragment No. 7.1, the recombinant plasmids pRL705 and pRL707 with different orientation of phage DNA fragment were obtained. An attempt to clone the fragments No. 8.2 (4.2 kb), No. 7.2 (5.45 kb) and No. 6 (8.1 kb) was unsuccessful and this probably indicates the presence of the genes, whose products are deleterious to the growth of bacterial cell.  相似文献   

6.
7.
A group of lambda mutants (mutants lambda 0) harbouring lesser number of EcoRI restriction sites on DNA molecules was selected. lambda3-1 recombinant (genotype lambdab221amgamma210Sr1lambda3+c-Px) was created by crosses of lambda02 phage with other lambda mutants. This phage DNA may be used as a vector molecule which makes it possible to select easily phages harbouring insertions of EcoRI DNA fragments. The maximal size of DNA fragment, the insertion of which would not decrease lambda3-1 viability, is 7.7 megadaltone. Lambda3-1 DNA has three regions heterological to lambda DNA, two of which probably include sites SRIlambda4 and SRIlambda5 and some juxtaposed genes. For example, Ptgene of lambda phage in juxtaposition with site SRIlambda4 is substituted by Px gene on the lambda3-1 DNA molecule.  相似文献   

8.
The EcoRI and HindII restriction endonucleases and pBR325 vector plasmid were used to obtain a set of hybrid plasmids containing ColIb-P9 fragments carrying the characters for colicin Ib synthesis and immunity and the ability to inhibit T5 phage growth. The genes responsible for colicin synthesis and immunity are closely linked and localized in the EcoRI fragment with a molecular weight of 1.85 MD (pIV41) or in the HindII fragment of 2.4 MD (pIV1). The clones containing these plasmids show an increased level of both spontaneous and mitomycin C-induced colicin synthesis and an increased level of immunity due to a larger dosage of the genes. The genes controlling T5 growth inhibition are localized in other restriction fragments of ColIb DNA: the EcoRI fragment of 1.45 MD (pIV7) and the HindII fragment of 4.3 MD (pIV5). We have demonstrated by means of hybrid plasmids that T5 growth inhibition is not connected with the colicin Ib synthesized in infected cells and is controlled by other specific product(s) of the ColIb plasmid genes. T5 phage growth was as efficient in clones containing plasmids with cloned colicin Ib genes as in a strain without plasmids. An investigation of the expression of the genes inhibiting T5 phage growth in an in vitro protein synthesis system has revealed a protein with a molecular weight of 36 000 which seems to take part in the process.  相似文献   

9.
Among 32 lambda-T4 recombinant phages selected for growth on a thymidylate synthetase-deficient (thyA) host, 2 were shown to carry the T4 thymidine kinase (tk) gene. The lambda-T4tk phages contain two T4 HindIII DNA fragments (2.0 and 1.5 kilobases) that hybridize to restriction fragments of T4 DNA, encompassing the tk locus at 60 kilobases on the T4 map. The T4tk insert compensates for the simultaneous host deficiencies of thymidine kinase and thymidylate synthetase in a thymidine kinase-deficient (tdk) host growing in the presence of fluorodeoxyuridine when provided with thymidine and uridine. The lambda-T4tk hybrid phages specified five polypeptides with Mrs of 22,000 (22K), 21K, 14K, 11K, and 9K.  相似文献   

10.
Transduction of antibiotic resistance determinants of the plasmid pBR322 with pseudoT-even bacteriophages RB42, RB43, and RB49 was studied. It is established that antibiotic resistance determinants of plasmid pBR322 from Escherichia coli recA(+)- and recA(-)-donor strains do not differ significantly in respect to the efficiency of transduction. Amber mutants RB43-21, RB43-33, and a double amber mutant RB43am21am33 were obtained. These mutants facilitated transduction experiments in some cases. Transduction of antibiotic resistance markers of the vector plasmid pBR325 and recombinant plasmid pVT123, containing a DNA fragment with hoc segE uvsW genes of phage T4, was studied. The frequency of appearance of transductants resistant to pseudoT-even bacteriophages used in transduction was determined, and the sensitivity of resistant transductants to 32 RB bacteriophages and also to phages lambda, T2, T4, T5, T6, T7, and BF23 was estimated. The efficiency of plating pseudoT-even bacteriophages RB42 and RB43 on strain E. coli 802 himA hip carrying mutations in genes that encode subunits of the Integration Host Factor (IHF) was shown to be higher than on isogenic strain E. coli 802. The growth of pseudoT-even bacteriophages limited in vivo by modification-restriction systems of chromosomal (EcoKI, EcoBI), phage (EcoP1I), and plasmid (EcoRI, EcoR124I, and EcoR124II) localization was analyzed. It was shown that these phages were only slightly restricted by the type I modification-restriction systems EcoBI, EcoR124I, and EcoR124II. Phage RB42 was restricted by systems EcoKI, EcoP1I, and EcoRI; phage RB43, by systems EcoKI and EcoRI; and phage RB49, by the EcoRI modification-restriction system.  相似文献   

11.
Summary A fragment of Escherichia coli bacteriophage T4D DNA, containing 6.1 Kbp which included the six genes (genes 25, 26, 51, 27, 28 and 29) coding for the tail baseplate central plug has been partially characterized. This DNA fragment was obtained originally by Wilson et al. (1977) by the action of the restriction enzyme EcoRI on a modified form of T4 DNA and was inserted in the pBR322 plasmid and then incorporated into an E. coli K12 strain called RRI. This plasmid containing the phage DNA fragment has now been reisolated and screened for cleavage sites for various restriction endonucleases. Restriction enzymes Bgl 11 and Xbal each attacked one restriction site and the enzyme Hpa 1 attacked two restriction sites on this fragment. The combined digestion of the hybrid plasmid containing the T4 EcoRI DNA fragment conjugated to the pBR322 plasmid with one of these enzymes plus Bam H1 restriction enzyme resulted in the localization of the restriction site for Bgl 11, Xba 1 and Hpa 1. Escherichia coli strain B cells were transformed with this hybrid plasmid and found to have some unexpected properties. E. coli B cells, which are normally restrictive for T4 amber mutants and for T4 temperature sensitive mutants (at 44°) after transformation, were permissive for 25am, 26am and 26Ts, 51am, and 51Ts, 27Ts, and 28Ts T4 mutants. Extracts from the transformed E. coli cells were found in complementation experiments to contain the gene 29 product, as well as the gene 26 product, the gene 51 product, and the gene 27 product. The complementation experiments and the permissiveness of the transformed E. coli B cells to the various conditional lethal mutants clearly showed that the six T4 genes were producing all six gene products in these transformed cells. However, these cells were not permissive for T4 amber mutants in genes 27, 28, and 29. The transformed E. coli B cells, as compared to untransformed cells, were found to have altered outer cell walls which made them highly labile to osmotic shock and to an increased rate of killing by wild type T4 and all T4 amber mutants except for T4 am29. The change in cell walls of the transformed cells has been found to be due to the T4 baseplate genes on the hybrid plasmid, since E. coli B transformed by the pBR322 plasmid alone does not show the increase in osmotic sensitivity.  相似文献   

12.
A phage-plasmid hybrid was constructed for use as a recombinant DNA vector, allowing the propagation of cloned EcoRI restriction endonuclease fragments of about 2 X 10(6) to 11 X 10(6) daltons. The colicin E1 plasmid replicon was fused to the left arm of a lambdagt generalized transducing phage with a thermolabile repressor, yielding a genome which could be replicated either by phage lambda functions or via the colicin E1 plasmid replicon. At the nonpermissive temperature, phage functions were derepressed and phage growth occurred lytically. Alternatively, at the permissive temperature, lambda functions were repressed and the vector replicated as a covalently closed circular plasmid. The phage-plasmid hybrid vector could be maintained at a copy number determined by the colicin E1 plasmid replicon and was also sensitive to amplification after chloramphenicol treatment. An EcoRI fragment of Escherichia coli DNA encoding genes of the arabinose operon also was inserted into the central portion of the vector.  相似文献   

13.
Abstract Infectious phage particles can be formed in vitro when extracts of T1-infected cells are incubated with T1 DNA. The DNA packaging system is based on mixtures of complementing extracts from Escherichia coli sup0 cells infected with the amber mutants am 4 (gene 16) or am 10 (gene 13). Gene 16 mutants are defective in the formation of DNA-filled heads but make proheads; gene 13 mutants are defective in prohead formation. Three forms of DNA have been packaged: (1) endogenous concatemeric DNA present in mixtures of am 4 and am 10 mutant extracts; (2) concatemeric DNA; (3) virion DNA both when supplied exogenously to mixtures of am 4 · am 20 and am 10 · am 20 double mutant extracts ( am 20 inhibits T1 DNA synthesis). The reaction requires added ATP, Mg2+ and spermidine for optimum efficiency and produces about 1.5 × 103 pfu/ μ g and about 1 × 104 pfu/ μ g for exogenous concatemeric and virion DNA, respectively.  相似文献   

14.
H Gram  W Rüger 《The EMBO journal》1985,4(1):257-264
The nucleotide sequence of T4 genes 55, alpha gt, 47 and 46 was determined by a combination of 'classical' procedures and a shotgun approach. Small DNA fragments generated by frequent cleavage with restriction enzymes or by sonication of restriction fragments were cloned in phage M13 vectors and sequenced by the dideoxy method. The positions of the genes were determined by marker rescue between the corresponding T4 amber mutants and the cloned T4 DNA fragments used in the sequencing experiments. The sequence gives an insight into the organization of this 7.1-kb early region of the T4 genome and shows that genetically 'silent' portions within this region are not void of genetic information.  相似文献   

15.
Escherichia coli infected with phage T4 mutants defective in synthesis of the three major internal proteins found in the phage head, IPI-, IPII-, IPIII-, or IP degrees (lacking all three) were examined in the electron microscope for head formation. Infection with IPI- or IPII- does not appear to induce increased aberrant head formation, whereas IPII- or IP degrees infections result in production of polyheads and viable phage. Multiple mutants of the early head formation genes 20, 21, 22, 23, 24, 31, 40 and IP degrees were constructed. Combination with IP degrees increases polyhead formation when head formation is not blocked at a more defective stage but results in a qualitative shift to lump formation in association with gene 22 mutants. Thin-sectioning studies show morphologically similar cores in amber 21 and 21am IP degrees tau particles. These morphological observations, genetic evidence for interaction between ts mutants in gene 22 and the IP mutants, and analysis of the protein composition of tau particles further support the idea that p22 and the internal proteins form an unstable assembly core necessary for an early stage of head formation (M. K. Showe and L. W. Black, 1973).  相似文献   

16.
EcoRI fragments of the amiA locus in Streptococcus pneumoniae were cloned either into a derivative of lambda or into pBR325 plasmid. Mutations in the amiA locus confer resistance to aminopterin. Pneumococcal DNA fractions were enriched for the desired EcoRI fragments by agarose gel electrophoresis. Recombinant clones were detected directly by transformation with DNA and lambda plaques or from single-colony lysates containing pBR325. The use of cloned DNA in pneumococcal transformation has revealed a number of features pertinent to transformation in general, and also the mismatch repair process. High transformation levels can be achieved, from 40 to 80% of a competent culture. These high levels of transformation with cloned DNA made in a foreign host are taken to confirm the absence of restriction effects on transformation in S. pneumoniae. At saturation, similar transformation levels are obtained with hybrid phage or hybrid plasmid DNAs, but the DNA amount required is 20 to 25 times lower for hybrid plasmid than for hybrid phage, probably because plasmid DNA is 10 times shorter than phage DNA. There is no "end effect" with intact hybrid DNA, i.e. similar transformation levels are achieved for markers whatever their map position on the cloned pneumococcal fragment. Cloned DNA has been used to study the action of the mismatch repair process (hex system). The presence of two mismatches in the same cell is not enough to saturate the hex system, and is not enough to kill the colony-forming center (cfc).  相似文献   

17.
Erwinia chrysanthemi ENA49 structural and regulatory ptl genes, coding for pectate lyase (Ptl) were cloned in Escherichia coli cells. Phage vector lambda L47.1 and phasmid vector lambda pMYF131 were used for constructing libraries of BamHI and EcoRI fragments, respectively, of Er. chrysanthemi chromosomal DNA. Among the 1,100 hybrid clones containing BamHI Er. chrysanthemi DNA fragments and 11,000 hybrid clones containing EcoRI fragments, six and 45 clones, respectively, were identified as having pectolytic activity. Two different structural genes, designated ptlA and ptlB, have been subcloned on multi-copy plasmids. Genes ptlA and ptlB are located side by side on the chromosome of Er. chrysanthemi and transcribe in the same direction. Each of the genes has its own promoter. Southern-blot hybridization analysis showed that the cloned ptl genes shared practically no homology and each of the genes was represented by a single copy on the Er. chrysanthemi chromosome. Other ptl genes capable of expression in E. coli cells were not found in the gene libraries. Negative regulation of the ptlA gene expression by a cloned gene called ptlR was shown. To screen the gene library for the ptlR gene, a specific genetic system was devised. The genes studied are located within an EcoRI chromosomal DNA fragment of 7.3 kb in the order: ptlA-ptlB-ptlR.  相似文献   

18.
Genetic complementation by cloned bacteriophage T4 late genes.   总被引:7,自引:5,他引:2       下载免费PDF全文
Bacteriophage T4 containing nonsense mutations in late genes was found to be genetically complemented by four conjugate T4 genes (7, 11, 23, or 24) located on plasmid or phage vectors. Complementation was at a very low level unless the infecting phage carried a denB mutation (which abolishes T4 DNA endonuclease IV activity). In most experiments, the infecting phage also had a denA mutation, which abolishes T4 DNA endonuclease II activity. Mutations in the alc/unf gene (which allow dCMP-containing T4 late genes to be expressed) further increased complementation efficiency. Most of the alc/unf mutant phage strains used for these experiments were constructed to incorporate a gene 56 mutation, which blocks dCTP breakdown and allows replication to generate dCMP-containing T4 DNA. Effects of the alc/unf:56 mutant combination on complementation efficiency varied among the different T4 late genes. Despite regions of homology, ranging from 2 to 14 kilobase pairs, between cloned T4 genes and infecting genomes, the rate of formation of recombinants after T4 den:alc phage infection was generally low (higher for two mutants in gene 23, lower for mutants in gene 7 and 11). More significantly, when gene 23 complementation had to be preceded by recombination, the complementation efficiency was drastically reduced. We conclude that high complementation efficiency of cloned T4 late genes need not depend on prior complete breakage-reunion events which transpose those genes from the resident plasmid to a late promoter on the infecting T4 genome. The presence of the intact gene 23 on plasmids reduced the yield of T4 phage. The magnitude of this negative complementation effect varied in different plasmids; in the extreme case (plasmid pLA3), an almost 10-fold reduction of yield was observed. The cells can thus be said to have been made partly nonpermissive for this lytic virus by incorporating a part of the viral genome.  相似文献   

19.
UV-induced mutation in bacteriophage T4.   总被引:2,自引:0,他引:2       下载免费PDF全文
Two late gene am mutants of bacteriophage T4 that can be induced to revert by UV were crossed to a temperature-sensitive ligase mutant. In the double mutants, UV-induced reversion was eliminated at a semirestrictive temperature. When the single am mutants were irradiated and then allowed a single passage in a permissive host, the UV-induced reversion frequency was increased by 15- to 25-fold. This increased mutagenesis was also abolished by the presence of the ligase allele. When the UV-irradiated single am mutants multiply infected a permissive host, allowing multiplicity reactivation to occur, the induced reversion frequency was reduced similarly to the reduction in lethality. The mutagenesis that remained was again abolished by the presence of the ligase allele. It is concluded that UV induces mutations in phage T4 through the action of a pathway that includes polynucleotide ligase. The increase in mutation frequency after growth in a permissive host implies that mutagenesis can occur at more than one stage of the infection rather than only in an early stage before expression of the mutant genome. The process of multiplicity reactivation appears to be error-free since it overcomes lethal lesions without inducing new mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号