首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic microsomes catalyze the oxidation of methanol, ethanol, propanol and butanol to their respective aldehydes. The reaction requires molecular oxygen and NADPH and is inhibited by CO, sharing thereby properties with other microsomal drug oxidations. This microsomal alcohol oxidizing system increases in activity after chronic ethanol consumption and operates independently from catalase as well as alcohol dehydrogenase. It appears responsible, at least in part, for the alcohol metabolism by the alcohol dehydrogenase independent pathway of the liver.  相似文献   

2.
A novel redox cycle is suggested, performing interconversion between acetaldehyde and ethanol in aerobically growing ethanologenic bacterium Zymomonas mobilis. It is formed by the two alcohol dehydrogenase (ADH) isoenzymes simultaneously catalyzing opposite reactions. ADH I is catalyzing acetaldehyde reduction. The local reactant ratio at its active site probably is shifted towards ethanol synthesis due to direct channeling of NADH from glycolysis. ADH II is oxidizing ethanol. The net result of the cycle operation is NADH shuttling from glycolysis to the membrane respiratory chain, and ensuring flexible distribution of reducing equivalents between the ADH reaction and respiration.  相似文献   

3.
The malate-aspartate, fatty acid, and α-glycerophosphate shuttles for the transport of reducing equivalents into mitochondria were reconstituted, using isolated hepatic mitochondria and the extramitochondrial components of the shuttles. Clofibrate and thyroxin increased, while propylthiouracil treatment decreased, the activity of mitochondrial α-glycerophosphate dehydrogenase. Despite these changes, the activity of the reconstituted α-glycerophosphate shuttle was similar in mitochondria from control rats and those from rats treated with clofibrate and propylthiouracil. There was an increase in the activity of the shuttle using mitochondria from thyroxin-treated rats. Rotenone caused 60–90% inhibition of this shuttle, suggesting that rotenone-sensitive NADH dehydrogenase participates in the pathway of oxidation of extramitochondrial hydrogen. Palmitate, oleate, and octanoate were equally effective in reconstituting a cyclic fatty acid shuttle. The shuttle was inhibited by various compounds affecting mitochondrial metabolism, including oligomycin, dinitrophenol, cyanide, rotenone, atractyloside, and α-bromopalmitate. Carnitine and several dicarboxylic and tricarboxylic acids which stimulate fatty acid elongation, augmented fatty acid shuttle activity. The malate-aspartate shuttle was inhibited by cycloserine, amino-oxyacetic acid, and hydrazine, and stimulated by pyridoxal phosphate, at the same concentrations which affected the activities of cytoplasmic and mitochondrial glutamic oxalacetic transaminase. This shuttle was inhibited by uncouplers, antimycin, azide, cyanide, rotenone, amobarbital, oligomycin, and several inhibitors of anion transport including iodobenzylmalonate and avenaciolide. The reconstituted shuttle is sufficiently active to provide about 70–80% of the oxalacetate required for maximal rates of gluconeogenesis. Extrapolations based on the rates of mitochondrial oxidation of acetaldehyde and the activity of the microsomal ethanol oxidizing system suggest that any one of the shuttles could account for the rate of ethanol metabolism in vitro by the alcohol dehydrogenase pathway.  相似文献   

4.
1. Ethanol metabolism in slices or homogenates of transplantable hepatocellular carcinoma HC-252 (HC-252) was 50 to 60% of the rate found in host liver slices or homogenates when they were expressed per gram of tissue wet weight and 70 to 80% of the liver when the rates were expressed per milligram of tissue protein. At 10 mM ethanol, the activities of alcohol dehydrogenase in tumor and liver supernatants were comparable. 2. Tumor microsomes did not oxidize ethanol in the presence of a NADPH-generating system, indicating the absence of the microsomal ethanol-oxidizing system and catalase-mediated peroxidation of ethanol. The HC-252 microsomes were contaminated with catalase, and acetaldehyde production occurred in the presence of a H2O2-generating system (xanthine oxidase). The virtual absence of ethanol oxidation and drug metabolism (aminopyrine demethylase and aniline hydroxylase) in HC-252 microsomes may be due to the low activities of NADPH-cytochrome c reductase, NADPH oxidase, and NADPH-dependent oxygen uptake. 3. Microsomal oxidation of ethanol was present in Morris hepatoma 5123C, a well-differentiated tumor of intermediate growth rate, while activity was negligible in microsomes from Morris hepatoma 7288CTC, a less differentiated tumor. Microsomal NADPH oxidase was present in the well differentiated tumor 5123C but was lacking in the less differentiated tumor 7288CTC. Several microsomal, mitochondrial, and cytosolic properties of HC-252 are similar to those of Morris hepatoma 7288CTC but differ from those of the more differentiated 5123C tumor and normal liver. 4. The content of mitochondrial protein in HC-252 was only 25% that of liver, and oxygen consumption per gram of tumor was only 28% that of the liver. When corrected for the mitochondrial protein content, oxygen uptake in tumor HC-252 and liver homogenates was comparable. Isolated tumor and liver mitochondria displayed comparable State 4 and 3 rates of oxygen consumption with succinate and glutamate as substrates. The activities of the reconstituted malate-aspartate and alpha-glycerophosphate shuttles were only slightly lower in isolated HC-252 mitochondria compared to liver mitochondria, when shuttles were reconstituted with purified enzymes. 5. Antimycin inhibited alcohol metabolism,and pyruvate stimulated alcohol metabolism, much less in tumor slices than in liver slices, suggesting the presence of an augmented mitochondria-independent, cytosolic mechanism for oxidizing reducing equivalents in the tumor. These factors suggest that oxidation of NADH is the limiting factor in ethanol metabolism. Whereas, in the liver mitochondrial reoxidation is predominant, in HC-252, cytosolic reoxidation of NADH also plays a major role.  相似文献   

5.
Different pathways of alcohol metabolism, the alcohol dehydrogenase pathway, the microsomal ethanol-oxidizing system and the catalase pathway are discussed. Alcohol consumption leads to accelerated ethanol metabolism by different mechanisms including an increased microsomal function. Microsomal induction leads to interactions of ethanol with drugs, hepatotoxic agents, steroids, vitamins and to an increased activation of mutagens/carcinogens. A number of ethanol-related complications may be explained by the production of its first metabolite, acetaldehyde, such as alterations of mitochondria, increased lipid peroxidation and microtubular alterations with its adverse effects on various cellular activities, including disturbances of cell division. Nutritional factors in alcoholics such as malnutrition are discussed especially with respect to its possible relation to cancer.  相似文献   

6.
The metabolism of [2-3H]lactate was studied in isolated hepatocytes from fed and starved rats metabolizing ethanol and lactate in the absence and presence of fructose. The yields of 3H in ethanol, water, glucose and glycerol were determined. The rate of ethanol oxidation (3 mumol/min per g wet wt.) was the same for fed and starved rats with and without fructose. From the detritiation of labelled lactate and the labelling pattern of ethanol and glucose, we calculated the rate of reoxidation of NADH catalysed by lactate dehydrogenase, alcohol dehydrogenase and triosephosphate dehydrogenase. The calculated flux of reducing equivalents from NADH to pyruvate was of the same order of magnitude as previously found with [3H]ethanol or [3H]xylitol as the labelled substrate [Vind & Grunnet (1982) Biochim. Biophys. Acta 720, 295-302]. The results suggest that the cytoplasm can be regarded as a single compartment with respect to NAD(H). The rate of reduction of acetaldehyde and pyruvate was correlated with the concentration of these metabolites and NADH, and was highest in fed rats and during fructose metabolism. The rate of reoxidation of NADH catalysed by lactate dehydrogenase was only a few per cent of the maximal activity of the enzymes, but the rate of reoxidation of NADH catalysed by alcohol dehydrogenase was equal to or higher than the maximal activity as measured in vitro, suggesting that the dissociation of enzyme-bound NAD+ as well as NADH may be rate-limiting steps in the alcohol dehydrogenase reaction.  相似文献   

7.
Treatment with thyroxine or triiodothyronine for 7 days in order to simulate a hyperthyroid state results in an enhanced activity of the microsomal ethanol oxidizing system. Conversely, a decrease of hepatic alcohol dehydrogenase activity was observed under these experimental conditions, whereas hepatic catalase activity remained unchanged. These findings suggest that if chronic ethanol consumption simulates a “hyperthyroid hepatic state”, increased rates of ethanol metabolism observed following prolonged alcohol intake might therefore be attributed at least in part to an induction of microsomal ethanol oxidizing system activity in the liver.  相似文献   

8.
Lately the mechanism of craving for alcohol has been related to the local level of brain acetaldehyde occurring in ethanol consumption and depending on the activities of the brain and liver ethanol and acetaldehyde-metabolizing systems. In this connection, we studied the effect of chronic acetaldehyde intoxication on the activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), the microsomal ethanol oxidizing system (MEOS) and liver and brain catalase as well as ethanol and acetaldehyde levels in the blood. The results showed that the chronic acetaldehyde intoxication did not alter significantly the activities of liver ADH, MEOS and catalase as well as liver and brain ALDH. In parallel with this, the systemic acetaldehyde administration led to shortened time of ethanol narcosis and activation of catalase in the cerebellum and left hemisphere, which may indicate involvement of this enzyme into metabolic tolerance development.  相似文献   

9.
Regulation of ethanol metabolism in the rat   总被引:2,自引:0,他引:2  
The purpose of these experiments was to examine the factors which regulate ethanol metabolism in vivo. Since the major pathway for ethanol removal requires flux through hepatic alcohol dehydrogenase, the activity of this enzyme was measured and found to be 2.9 mumol/(min X g liver). Ethanol disappearance was linear for over 120 min in vivo and the blood ethanol fell 0.1 mM/min; this is equivalent to removing 20 mumol ethanol/min and would require that flux through alcohol dehydrogenase be about 60% of its measured maximum velocity. To test whether ethanol metabolism was limited by the rate of removal of one of the end products (NADH) of alcohol dehydrogenase, fluoropyruvate was infused to reoxidize hepatic NADH and to prevent NADH generation via flux through pyruvate dehydrogenase. There was no change in the rate of ethanol clearance when fluoropyruvate was metabolized. Furthermore, enhancing endogenous hepatic NADH oxidation by increasing the rate of urea synthesis (converting ammonium bicarbonate to urea) did not augment the steady-state rate of ethanol oxidation. Hence, transport of cytoplasmic reducing power from NADH into the mitochondria was not rate limiting for ethanol oxidation. In contrast, ethanol oxidation at the earliest time periods could be augmented by increasing hepatic urea synthesis.  相似文献   

10.
Rates of exchange catalysed by alcohol dehydrogenase were determined in vivo in order to find rate-limiting steps in ethanol metabolism. Mixtures of [1,1-2H2]- and [2,2,2-2H3]ethanol were injected in rats with bile fistulas. The concentrations in bile of ethanols having different numbers of 2H atoms were determined by g.l.c.-m.s. after the addition of [2H6]ethanol as internal standard and formation of the 3,5-dinitrobenzoates. Extensive formation of [2H4]ethanol indicated that acetaldehyde formed from [2,2,2-2H3]ethanol was reduced to ethanol and that NADH used in this reduction was partly derived from oxidation of [1,1-2H2]ethanol. The rate of acetaldehyde reduction, the degree of labelling of bound NADH and the isotope effect on ethanol oxidation were calculated by fitting models to the found concentrations of ethanols labelled with 1-42H atoms. Control experiments with only [2,2,2-2H3]ethanol showed that there was no loss of the C-2 hydrogens by exchange. The isotope effect on ethanol oxidation appeared to be about 3. Experiments with (1S)-[1-2H]- and [2,2,2-2H3]ethanol indicated that the isotope effect on acetaldehyde oxidation was much smaller. The results indicated that both the rate of reduction of acetaldehyde and the rate of association of NADH with alcohol dehydrogenase were nearly as high as or higher than the net ethanol oxidation. Thus, the rate of ethanol oxidation in vivo is determined by the rates of acetaldehyde oxidation, the rate of dissociation of NADH from alcohol dehydrogenase, and by the rate of reoxidation of cytosolic NADH. In cyanamide-treated rats, the elimination of ethanol was slow but the rates in the oxidoreduction were high, indicating more complete rate-limitation by the oxidation of acetaldehyde.  相似文献   

11.
Alcohol induced hepatic fibrosis: role of acetaldehyde   总被引:2,自引:0,他引:2  
Alcohol abuse is one of the major causes of liver fibrosis worldwide. Although the pathogenesis of liver fibrosis is a very complex phenomenon involving different molecular and biological mechanisms, several lines of evidence established that the first ethanol metabolite, acetaldehyde, plays a key role in the onset and maintenance of the fibrogenetic process. This review briefly summarizes the molecular mechanisms underlying acetaldehyde pro-fibrogenic effects. Liver fibrosis represents a general wound-healing response to a variety of insults. Although mortality due to alcohol abuse has been constantly decreasing in the past 20 years in Southern Europe and North America, in several Eastern-European countries and Great Britain Alcoholic Liver Disease (ALD) shows a sharply increasing trend [Bosetti, C., Levi, F., Lucchini, F., Zatonski, W.A., Negri, E., La, V.C., 2007. Worldwide mortality from cirrhosis: an update to 2002. J. Hepatol. 46, 827-839]. ALD has a complex pathogenesis, in which acetaldehyde (AcCHO), the major ethanol metabolite, plays a central role. Ethanol is mainly metabolized in the liver by two oxidative pathways. In the first one ethanol is oxidized to acetaldehyde by the cytoplasmic alcohol dehydrogenase enzyme (ADH), acetaldehyde is then oxidized to acetic acid by the mitochondrial acetaldehyde dehydrogenase (ALDH). The second pathway is inducible and involves the microsomal ethanol-oxidizing system (MEOS), in which the oxidation of ethanol to acetaldehyde and acetic acid also leads to generation of reactive oxygen species (ROS). Chronic ethanol consumption significantly inhibits mitochondrial ALDH activity while the rate of ethanol oxidation to acetaldehyde is even enhanced, resulting in a striking increase of tissue and plasma acetaldehyde levels [Lieber, C.S., 1997. Ethanol metabolism, cirrhosis and alcoholism. Clin. Chim. Acta 257, 59-84]. This review will focus on the molecular mechanisms by which acetaldehyde promote liver fibrosis.  相似文献   

12.
Summary In the final step of the pathway producing ethanol in anoxic crucian carp (Carassius carassius L.), acetaldehyde is reduced to ethanol by alcohol dehydrogenase. The presence of aldehyde dehydrogenase in the tissues responsible for ethanol production could cause an undesired oxidation of acetaldehyde to acetate coupled with a reduction of NAD+ to NADH. Moreover, acetaldehyde could competitively inhibit the oxidation of reactive biogenic aldehydes. In the present study, the distribution of aldehyde dehydrogenase (measured with a biogenic aldehyde) and alcohol dehydrogenase (measured with acetaldehyde) were studied in organs of crucian carp, common carp (Cyprinus carpio L.), rainbow trout (Salmo gairdneri Richardson), and Norwegian rat (Rattus norvegicus Berkenhout). The results showed that alcohol dehydrogenase and aldehyde dehydrogenase activities were almost completely spatially separated in the crucian carp. These enzymes occurred together in the other three vertebrates. In the crucian carp, alcohol dehydrogenase was only found in red and white skeletal muscle, while these tissues contained exceptionally low aldehyde dehydrogenase activities. Moreover, the low aldehyde dehydrogenase activity found in crucian carp red muscle was about 1000 times less sensitive to inhibition by acetaldehyde than that found in other tissues and other species. The results are interpreted as demonstrating adaptations to avoid a depletion of ethanol production, and possibly inhibition of biogenic aldehyde metabolism.Abbreviations ADH alcohol dehydrogenase - ALDH aldehyde dehydrogenase - DOPAL 3,4-dihydroxyphenylacetaldehyde - MAO monoamine oxidase - PCA perchloric acid  相似文献   

13.
The pathways responsible for ethanol oxidation and the toxic results of its metabolism are reviewed. The predominant pathway for ethanol oxidation at low ethanol concentrations involves alcohol dehydrogenase. However, at high alcohol concentrations, up to 50% of ethanol uptake is 4-methylpyrazole-intensitive. Oxidation of ethanol under these conditions is associated with a change in the steady-stage concentration of catalase-H2O2. Based on recent evidence, we conclude that it is unnecessary to postulate that ethanol is oxidized directly via cytochrome P-450. Acetaldehyde production from ethanol via the microsomal subfraction can be accounted for by the combined activities of catalase-H2O2 and alcohol dehydrogenase. The metabolism of ehtanol via alcohol dehydrogenase produces a marked reduction in the hepatocellular NAD-NADH sytems. This reduction is indirectly responsible for the inhibition of glycolysis, gluconeogenesis, citric acid cycle activity, and fatty acid oxidation and may be related to some of the pathological effects observed following chronic consumption of alcohol. Attempts in inhibit alcohol dehydrogenase with alkylpyrazoles and activate catalase with substrates for peroxisomal H2O2-generating flavoproteins, while successful, may have limited applicability because of the native toxicity of the substrates themselves...  相似文献   

14.
In this study, a pronounced increase of ethanol oxidation was found in hepatocytes obtained from adenosine-treated rats, or after in vitro additional of the nucleoside; this finding was accompanied by a maintenance of the normal cytoplasmic redox state. These results suggest a higher availability of cytoplasmic NAD in these cells. Therefore, the metabolic pathways which carry out the reoxidation of cytosolic reducing equivalents, namely, malate-aspartate and alpha-glycerophosphate shuttles, were examined. Isolated mitochondria from adenosine-treated rats had an increased NADH oxidation by the malate-aspartate shuttle; furthermore, in vivo and in vitro addition of adenosine to the hepatocytes induced changes in the equilibrium of the malate-aspartate shuttle, as evidenced by the subcellular distribution of the intermediates of this pathway. Acetaldehyde removal was also increased by adenosine and this fact was related to an elevated NAD/NADH ratio in the mitochondria. Thus, under these conditions, an increased ethanol uptake was accompanied by enhanced acetaldehyde removal in the animal. In conclusion, adenosine administration stimulates the transport of cytoplasmic reducing equivalents to the mitochondria, mainly through the malate-aspartate shuttle. This action, which may be located at the level of the mitochondrial membrane, is reflected by an enhancement of ethanol and acetaldehyde oxidations.  相似文献   

15.
The respective role of alcohol dehydrogenase, of the microsomal ethanol-oxidizing system, and of catalase in ethanol metabolism was assessed quantitatively in liver slices using various inhibitors and ethanol at a final concentration of 50 mm. Pyrazole (2 mm) virtually abolished cytosolic alcohol dehydrogenase activity but inhibited ethanol metabolism in liver slices by only 50–60%. The residual pyrazole-insensitive ethanol oxidation in liver slices remained unaffected by in vitro addition of the catalase inhibitor sodium azide (1 mm). At this concentration, sodium azide completely abolished catalatic activity of catalase in liver homogenate as well as peroxidatic activity of catalase in liver slices in the presence of dl-alanine. Similarly, in vivo administration of 3-amino-1,2,4-triazole, a compound which inhibits the activity of catalase but not that of the microsomal ethanol-oxidizing system, failed to decrease both the overall rates of ethanol oxidation and the activity of the pyrazole-insensitive pathway. Finally, butanol, a substrate and inhibitor of the microsomal ethanol-oxidizing system but not of catalase-H2O2, significantly decreased the pyrazole-insensitive ethanol metabolism in liver slices. These results indicate that alcohol dehydrogenase is responsible for half or more of ethanol metabolism by liver slices and that the microsomal ethanol-oxidizing system rather than catalase-H2O2 accounts for most if not all of the alcohol dehydrogenase-independent pathway.  相似文献   

16.
The velocity of acetaldehyde metabolism in rat liver may be governed either by the rate of regeneration of NAD from NADH through the electron transport system or by the activity of aldehyde dehydrogenase (ALDH). Measurements of oxygen consumption revealed that the electron transport system was capable of reoxidizing ALDH-generated NADH much faster than it was produced and hence was not rate-limiting for aldehyde metabolism. To confirm that ALDH activity was the rate-limiting factor, low-Km ALDH in slices or intact mitochondria was partially inhibited by treatment with cyanamide and the rate of acetaldehyde metabolism measured. Any inhibition of low-Km ALDH resulted in a decreased rate of acetaldehyde metabolism, indicating that no excess of low-Km ALDH existed. Approximately 40% of the metabolism of 200 microM acetaldehyde in slices was not catalyzed by low-Km ALDH. Fifteen of this 40% was catalyzed by high-Km ALDH. A possible contribution by aldehyde oxidase was ruled out through the use of a competitive inhibitor, quinacrine. Acetaldehyde binding to cytosolic proteins may account for the remainder. By measuring acetaldehyde accumulation during ethanol metabolism, it was also established that low-Km ALDH activity was rate-limiting for acetaldehyde oxidation during concomitant ethanol oxidation.  相似文献   

17.
Metabolic tolerance to ethanol has been attributed to enhanced mitochondrial reoxidation of reducing equivalents produced in the alcohol dehydrogenase (ADH) pathway or to non-ADH mechanisms. To resolve this issue, deermice lacking low Km hepatic ADH were fed for 2 weeks a liquid diet containing ethanol or isocaloric carbohydrate and hepatocytes were isolated. Ethanol (50 mM) oxidation increased (9.8 vs 4.5 nmol/min/10(6) cells in controls). To differentiate which of two non-ADH pathways (the microsomal ethanol oxidizing system (MEOS) or catalase) was responsible for the induction, four approaches were used. First, MEOS was assayed in hepatic microsomes and found to be increased (24.4 vs 6.8 nmol/min/mg protein in controls). Second, hepatocyte ethanol metabolism was measured after addition of the catalase inhibitor azide (0.1 mM) and found to be unchanged. By contrast, the competitive MEOS inhibitor, 1-butanol, depressed metabolism in a concentration-dependent manner. A third approach relied on measurement of isotope effects known to be different for MEOS and catalase. From the isotope effect values, MEOS was calculated to contribute 85% or more of total ethanol oxidation by cells from both ethanol-fed and control animals. A fourth approach involved in vivo pretreatment with pyrazole (300 mg/kg/day for 2 days), which reduced peroxidation by catalase to 13% of control values in liver homogenates while inducing MEOS activity to 152% of controls. Hepatocytes from pyrazole-treated deermice showed a 47% increase in ethanol metabolism, paralleling the MEOS induction and contrasting with the catalase suppression. These results indicate that since metabolic tolerance occurs in the absence of ADH, it is not necessarily ADH mediated, and further, that MEOS rather than catalase accounts for basal ethanol metabolism and its increase after chronic ethanol treatment.  相似文献   

18.
The solubilization and subsequent separation of the hepatic microsomal ethanol-oxidizing system from alcohol dehydrogenase and catalase activities by DEAE-cellulose column chromatography is described. Absence of alcohol dehydrogenase in the column eluates exhibiting microsomal ethanol-oxidizing system activity was demonstrated by the failure of NAD+ to promote ethanol oxidation at pH 9.6. Differentiation of the microsomal ethanol-oxidizing system from alcohol dehydrogenase was further shown by the apparent Km for ethanol (7.2 mm, insensitivity of the microsomal ethanol-oxidizing system to the alcohol dehydrogenase inhibitor pyrazole (0.1 mm) and by the failure of added alcohol dehydrogenase to increase the ethanol oxidation. Absence of catalatic activity in these fractions was demonstrated by spectrophotometric and polarographic assay. Differentiation of the microsomal ethanol-oxidizing system from the peroxidatic activity of catalase was shown by the apparent Km for oxygen (8.3 μm), insensitivity of the microsomal ethanol-oxidizing system to the catalase inhibitors azide and cyanide, and by the lack of a H2O2-generating system (glucose-glucose oxidase) to sustain ethanol oxidation in the eluates. The oxidation of ethanol to acetaldehyde by the alcohol dehydrogenase- and catalase-free fractions required NADPH and oxygen and was inhibited by CO. The column eluates showing microsomal ethanol-oxidizing system activity contained cytochrome P-450, NADPH-cytochrome c reductase, and phospholipids and also metabolized aminopyrine, benzphetamine, and aniline.  相似文献   

19.
A study was made of factors regulating the oxidation of ethanol in liver cells isolated from fed and fasted rats. The rate of ethanol oxidation was greater in liver cells from fed rats than from fasted rats. Inhibitors of the malate-aspartate shuttle decreased the rate of ethanol oxidation, suggesting that this shuttle contributes to the reoxidation of cytosolic NADH produced during the oxidation of ethanol. The greater inhibition of ethanol oxidation by antimycin than by rotenone suggests that the α-glycerophosphate shuttle also plays an important role in transporting reducing equivalents. The components of the malate-aspartate and α-glycerophosphate shuttles stimulated ethanol oxidation to a greater extent in liver cells from fasted rats than those from fed rats, suggesting that in the fasted state, ethanol oxidation is regulated by the intracellular concentrations of substrate shuttle components which transfer reducing equivalents into the mitochondria. Therefore, uncoupling agents, which stimulate oxygen consumption, do not stimulate ethanol oxidation, and concentrations of antimycin which depress oxygen uptake are much less effective in decreasing ethanol oxidation. By contrast, in liver cells from fed rats, the rate of ethanol oxidation was increased by uncoupling agents. Such stimulation was not observed when cells were prepared in the absence of albumin, probably due to leakage of shuttle substrates which leads to abnormally low intracellular levels. Indeed, when the shuttle substrates were added back to these preparations, uncouplers were effective in stimulating the rate of ethanol oxidation beyond the stimulation produced by the shuttle substrates alone. Thus, under conditions of sufficient intracellular levels of the intermediates of the substrate shuttles, ethanol oxidation is regulated by the capacity of the mitochondrial respiratory chain to reoxidize reducing equivalents generated by the alcohol dehydrogenase reaction.  相似文献   

20.
After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P450 isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed. The toxic effects of acetaldehyde are mentioned. The ethanol-induced oxidative stress: the increased MDA formation by incubated liver preparations, the absorption of conjugated dienes in mitochondrial and microsomal lipids and the decrease in the most unsaturated fatty acids in liver cell membranes are discussed. The formation of carbon-centered (1-hydroxyethyl) and oxygen-centered (hydroxyl) radicals during the metabolism of ethanol is considered: the generation of hydroxyethyl radicals, which occurs likely during the process of univalent reduction of dioxygen, is highlighted and is carried out by ferric cytochrome P450 oxy-complex (P450–Fe3+O2·−) formed during the reduction of heme-oxygen. The ethanol-induced lipid peroxidation has been evaluated, and it has been shown that plasma F2-isoprostanes are increased in ethanol toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号