首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Nitric oxide reductase of Paracoccus denitrificans was purified, with the use of 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) detergent, as membrane vesicles of apparent Mr = 2-3 x 10(6). Fifty percent of the protein was a peptide of Mr = 34,000. Further fractionation with sodium dodecyl sulfate (SDS) resulted in vesicles in which the peptide constituted 90-95% of the protein. This peptide, which is rich in Ala, Gly, Ser, Asx, and Glx, is considered to be the peptide of nitric oxide reductase. The CHAPSO- and SDS-fractionated preparations lost activity at 4 degrees C, pH 7.4, with half-times, respectively, of about 6 days and 4 h. Specific activities at 32 degrees C, pH 7.4, of about 0.33 mumol of NO x min-1 x mg-1 were realized after fractionation with CHAPSO in a phenazine methosulfate/ascorbate-based assay. The Km(NO) was less than or equal to 17 microM at pH 7.4. Rates decreased substantially below pH 5 and above pH 7.6. The preparations were free or almost free of cytochromes, exhibited otherwise no absorption bands in the visible region, contained no redox metals except for very small amounts of iron, were not inhibited by EDTA or some other common inhibitors of redox-metal enzymes, and were not observed to catalyze the reduction of nitrate, nitrite, or N2O. An absorption band at 274 nm in both the CHAPSO- and SDS-fractionated preparations was attributed to the presence of a solvent-soluble chromophore. N-Bromosuccinimide (NBS) inactivated the enzyme and bleached the chromophore both in the enzyme preparation and, after its purification, in 95% ethanol. NBS-inactivated enzyme could be reconstituted with purified chromophore, which alone seemed to have no nitric oxide reductase activity, but not with purified chromophore that had been reacted with NBS. Spectral changes interpretable as due to changes in redox state were not observed when enzyme was exposed to NO or certain reducing agents.  相似文献   

2.
Nitric oxide reductase was purified from Paracoccus denitrificans very nearly to homogeneity by a simple method that involved the use of octyl glucoside to solubilize the enzyme from membranes and required a single hydroxyapatite column. The enzyme had specific activities of about 10 mumol NO reduced x min-1 x mg-1 at pH 6.5 in an amperometric assay system using phenazine methosulfate/ascorbate as the reducing agent and about 22 mumol NO reduced x min-1 x mg-1 at pH 5.0, which is the optimum pH. These values are based on average rates over kinetically complex progress curves and would be about three times greater if based on maximum rate values. The enzyme appeared to be reversibly inhibited by NOaq and to have a Km too low (probably less than or equal to 1 microM) to measure reliably by the amperometric method. The effective second-order rate constant of the enzyme lay within 1 to 2 orders of magnitude of the diffusion controlled limit. The enzyme was composed of a tight complex of two cytochromes: a cytochrome c (Mr = 17,500) and a cytochrome b (Mr = 38,000). The mole ratios of cytochrome c to cytochrome b and Mr 17,500 peptide to Mr 38,000 peptide were both about 1.7, and the heme content was about 3 mol/73,000 g (38,000 + 2(17,500)). Each subunit therefore contained only one heme group. The Mr 38,000 peptide aggregated when heated in the sample buffer used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to the ascorbate-based activity, the enzyme showed a little NADH-NO oxidoreductase activity which was not inhibited by antimycin A. The enzyme lost activity with a half-life of about 2 days at 4 degrees C but could be preserved at -20 degrees C and in liquid nitrogen. It seemed not to be inactivated by aerobic solutions. These observations, and the recent ones by Carr and Ferguson (Carr, G.J., and Ferguson, S.J. (1990) Biochem. J. 269, 423-429) with a partially purified preparation of nitric oxide reductase, establish that the enzyme from Pa. denitrificans is a cytochrome bc complex which resembles that from Pseudomonas stutzeri (Heiss, B., Frunzke, K., and Zumft, W.G. (1989) J. Bacteriol. 171, 3288-3297). There would appear to be no functional relationship between nitric oxide reductase and a Mr = 34,000 peptide of Pa. denitrificans membranes reported previously to be present in purified preparations of a nitric oxide reductase (Hoglen, J., and Hollocher, T.C. (1989) J. Biol. Chem. 264, 7556-7563).  相似文献   

3.
4.
Nitrous oxide reductase from Wolinella succinogenes was purified very nearly to homogeneity. The enzyme was found to be dimeric, with Mr = 162,000 and subunit Mr = 88,000, and to contain three copper atoms and one iron atom (as cytochrome c) per subunit. The oxidized enzyme exhibited absorption bands at 410 and 528 nm, and the dithionite-reduced enzyme, at 416, 520, and 550 nm. The isoelectric point was 8.6; specific activity was at 25 degrees C and pH 7.1, 160 mumol x min-1 x mg-1; and Km was 7.5 microM N2O under the same conditions. alpha-Chymotrypsin cleaved the enzyme into cytochrome c-depleted dimers with an average Mr = 134,000 and cytochrome c-enriched fragments with an average Mr = 13,000. The enzyme was stable at 4 degrees C for at least 100 h under air and 3 h in the presence of 5 mM EDTA. It exhibited a dithionite-N2O oxidoreductase as well as a BV+-N2O oxidoreductase activity. During turnover with BV+ at 25 mM N2O, the enzyme was observed to undergo an initial activation and a subsequent inactivation. The kinetics of inactivation were approximately first-order in remaining activity, and the first-order rate constant was essentially independent of the initial enzyme concentration. These characteristics are consistent with the occurrence of turnover-dependent inactivation. Acetylene was a relatively weak inhibitor, but cyanide and azide were rather strong inhibitors. The nitrous oxide reductase of W. succinogenes is quite different from that of denitrifying bacteria. The amount of activity in cell extracts and the absence of O2-labile nitrous oxide reductase suggested that the cytochrome c containing enzyme may be the only one produced by W. succinogenes.  相似文献   

5.
NADP-dependent isocitrate dehydrogenase (ICDH) from the bacterium Paracoccus denitrificans was purified to homogeneity. The purification procedure involved ammonium sulphate fractionation, ion exchange chromatography, and gel permeation chromatography. The specific activity of purified ICDH was 801 nkat/mg, the yield of the enzyme 58%. The purity of the enzyme was checked by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. ICDH is a dimer composed of two probably identical subunits of relative molecular weight 90,000. The pH optimum of the enzyme reaction in the direction of substrate oxidation was found to be 5.6; the presence of Mn2+ is essential for enzyme activity. The absorption and fluorescence spectra of the homogeneous enzyme were measured as well.  相似文献   

6.
The nitric oxide reductase of Paracoccus denitrificans.   总被引:7,自引:0,他引:7       下载免费PDF全文
The nitric oxide (NO) reductase activity of the cytoplasmic membrane of Paracoccus denitrificans can be solubilized in dodecyl maltoside with good retention of activity. The solubilized enzyme lacks NADH-dependent activity, but can be assayed with isoascorbate plus 2,3,5,6-tetramethylphenylene-1,4-diamine as electron donor and with horse heart cytochrome c as mediator. Reduction of NO was measured with an amperomeric electrode. The solubilized enzyme could be separated from other electron-transport components, including the cytochrome bc1 complex and nitrite reductase, by several steps of chromatography. The purified enzyme had a specific activity of 11 mumols.min-1.mg of protein-1 and the Km(NO) was estimated as less than 10 microM. The enzyme formed N2O from NO with the expected stoichiometry. These observations support the view that NO reductase is a discrete enzyme that participates in the denitrification process. The enzyme contained both b- and c-type haems. The former was associated with a polypeptide of apparent molecular mass 37 kDa and the latter with a polypeptide of 18 kDa. Polypeptides of 29 and 45 kDa were also identified in the purified protein which showed variable behaviour on electrophoresis in polyacrylamide gels.  相似文献   

7.
A lipid with a UV chromophore (lambda max = 274 nm) was purified in small amounts from nitric oxide reductase of Paracoccus denitrificans and determined to have a molecular weight of 686, a most probable formula of C43H78O4N2 and about two phenylhydrazine-reactive carbonyls. On the basis of 1H and 13C-NMR, IR and mass spectrometric studies, the chromophoric lipid was inferred to have something like bilateral symmetry and to contain ketone-like carbonyls, alkene centers and at least three alkyl or olefinic chains. Several likely substructures are discussed and an enaminoketone is considered as a model for the chromophore. Evidence was lacking for phosphate, an aromatic ring, a 1,4-quinone, polyunsaturated fatty acyl groups, isoprenyl/isopranyl chains and simple alkyl acids, esters, amides and ethers. The compound appears to have some novel features. On the basis of reconstitution studies, the chromophoric lipid may be essential for nitric oxide reductase activity.  相似文献   

8.
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N(2)O (2NO+2e(-)+2H(+)-->N(2)O+H(2)O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O(2)-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O(2), we demonstrate that protons are indeed consumed from the 'outside'. First, multiple turnover reduction of O(2) resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O(2) shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O(2) as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O(2) show electron transfer coupled to proton uptake from outside the NOR-liposomes with a tau=15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Adelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.  相似文献   

9.
We report the first partial purification of nitrous oxide reductase, a unique and labile enzyme of denitrifying bacteria. The procedure, which required anaerobic conditions throughout, resulted in a 60-fold purification relative to crude lysate in the case ofParococcus denitrificans. The molecular weight was estimated by gel exclusion chromatography to be about 85,000. The partially purified enzyme is inactivated rapidly by O2, dithionite, and mercaptoethanol and is reversibly inhibited by moderate concentrations of common salts. Up to 80% of the original activity can be reconstituted following O2 inactivation by incubating the enzyme with reduced benzyl viologen for 2 to 3 h. TheV max pH profile shows a broad maximum at pH 8. The enzyme is irreversibly retained by common anion exchangers in the range pH 7 to 8 but can be eluted in acceptable yield as one of the last components from an imidazole-based anion exchange material by means of a pH gradient. This behavior implies that nitrous oxide reductase is very acidic. Among the several peptides observed by sodium dodecyl sulfate slab electrophoresis, only two, with apparent molecular weights of 58,000 and 25,000, correlated closely with the activity of fractions eluted from the imidazole column. These two peptides together comprised about 30% of the total protein in the fractions with highest specific activity.  相似文献   

10.
11.
The nos (nitrous oxide reductase) operon of Paracoccus denitrificans contains a nosX gene homologous to those found in the nos operons of other denitrifiers. NosX is also homologous to NirX, which is so far unique to P. denitrificans. Single mutations of these genes did not result in any apparent phenotype, but a double nosX nirX mutant was unable to reduce nitrous oxide. Promoter-lacZ assays and immunoblotting against nitrous oxide reductase showed that the defect was not due to failure of expression of nosZ, the structural gene for nitrous oxide reductase. Electron paramagnetic resonance spectroscopy showed that nitrous oxide reductase in cells of the double mutant lacked the Cu(A) center. A twin-arginine motif in both NosX and NirX suggests that the NosX proteins are exported to the periplasm via the TAT translocon.  相似文献   

12.
The isolation of an azurin type Cu protein from Paracoccus denitrificans (ATCC 13543) is described and some properties are reported. The purified protein has a molecular weight of 13,790 in a single polypeptide chain and contains one Cu atom per molecule. Its spectrum is typical of Type I, “blue” Cu proteins in showing an intense band at 595 nm; but it also shows a weaker absorption band at 448 nm. Its standard reduction potential has been measured to be +230 mV, which is the lowest potential observed to date for azurins isolated from bacterial sources. The purified protein shows fivefold greater electron transport activity with membrane fragments than with the soluble nitrite reductase of Paracoccus. This argues against the latter as the primary physiological oxidase system for azurin.  相似文献   

13.
Highly active succinate-ubiquinone reductase has been purified from cytoplasmic membranes of aerobically grown Paracoccus denitrificans. The purified enzyme has a specific activity of 100 units per mg protein, and a turnover number of 305 s-1. Succinate-ubiquinone reductase activity of the purified enzyme is inhibited by 3'-methylcarboxin and thenoyltrifluoroacetone. Four subunits, with apparent molecular masses of 64.9, 28.9, 13.4 and 12.5 kDa, were observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains 5.62 nmol covalently bound flavin and 3.79 nmol cytochrome b per mg protein. The 64.9 kDa subunit was shown to be a flavoprotein by its fluorescence. Polyclonal antibodies raised against this protein cross-reacted with the flavoprotein subunit of bovine heart mitochondrial succinate-ubiquinone reductase. The 28.9 kDa subunit is likely analogous to the bovine heart iron protein, and the cytochrome b heme is probably associated with one or both of the low-molecular-weight polypeptides. The cytochrome b is not reducible with succinate but is reoxidized with fumarate after prereduction with dithionite. Iron-sulfur clusters S-1 and S-3 of the Paracoccus oxidoreductase exhibit EPR spectra very similar to their mitochondrial counterparts. Paracoccus succinate-ubiquinone reductase complex is thus similar to the bovine heart mitochondrial enzyme with respect to prosthetic groups, enzymatic activity, inhibitor sensitivities, and polypeptide subunit composition.  相似文献   

14.
Methylamine dehydrogenase from Paracoccus denitrificans was purified to homogeneity in two steps from the periplasmic fraction of methylamine-grown cells. The enzyme exhibited a pI value of 4.3 and was composed of two 46,700-dalton subunits and two 15,500-dalton subunits. Each small subunit possessed a covalently bound pyrrolo-quinoline quinone prosthetic group. The amino acid compositions of the large and small subunits are very similar to those of other methylamine dehydrogenases which have been isolated from taxonomically different sources. The enzyme was able to catalyze the oxidation of a wide variety of primary aliphatic amines and diamines, but it did not react with secondary, tertiary, or aromatic amines. The enzyme exhibited optimal activity at pH 7.5, with Km values of 12.5 microM for methylamine and 156 microM for phenazine ethosulfate and a Vmax of 16.9 mumol/min per mg of protein. No loss of enzyme activity was observed after incubation for 48 h at pH values ranging from 3.0 to 10.5, and the enzyme was very stable to thermal denaturation. Enzyme activity and immunological detection of each subunit were only observed with cells which had been grown on methylamine as a carbon source.  相似文献   

15.
Electron spin-echo envelope modulation (ESEEM) spectroscopy has been performed in order to obtain structural information about the environment of the reduced [2Fe-2S] cluster (S-1 center), the oxidized [3Fe-4S] cluster (S-3 center), and the flavin semiquinone radical in purified succinate:ubiquinone reductase from Paracoccus denitrificans. Spectral simulations of the ESEEM data from the reduced [2Fe-2S] yielded nuclear quadrupole interaction parameters that are indicative of peptide nitrogens. We also observed a weak interaction between the oxidized [3Fe-4S] cluster and a peptide 14N. There was no evidence for coordination of any of the Fe atoms to 14N atoms of imidazole rings. The ESEEM data from the flavin semiquinone radical were more complicated. Here, evidence was obtained for interactions between the unpaired electron and only the two nitrogen atoms in the flavin ring.  相似文献   

16.
The current kinetic model for the nitric oxide reductase reaction (Girsch, P., and de Vries, S. (1997) Biochim. Biophys. Acta 1318, 202-216) does not involve the concentration of an electron donor. Here we introduce this variable and show, both theoretically and experimentally, its role in determining the extent of substrate inhibition by the excess of nitric oxide. NO is found to inhibit competitively with the electron donor, possibly by binding to the oxidized form of the enzyme. The observed partial character of the inhibition is tentatively explained by a slow reduction of the non-productive NO complex.  相似文献   

17.
The structures of F-ATPases have been determined predominantly with mitochondrial enzymes, but hitherto no F-ATPase has been crystallized intact. A high-resolution model of the bovine enzyme built up from separate sub-structures determined by X-ray crystallography contains about 85% of the entire complex, but it lacks a crucial region that provides a transmembrane proton pathway involved in the generation of the rotary mechanism that drives the synthesis of ATP. Here the isolation, characterization and crystallization of an integral F-ATPase complex from the α-proteobacterium Paracoccus denitrificans are described. Unlike many eubacterial F-ATPases, which can both synthesize and hydrolyse ATP, the P. denitrificans enzyme can only carry out the synthetic reaction. The mechanism of inhibition of its ATP hydrolytic activity involves a ζ inhibitor protein, which binds to the catalytic F1-domain of the enzyme. The complex that has been crystallized, and the crystals themselves, contain the nine core proteins of the complete F-ATPase complex plus the ζ inhibitor protein. The formation of crystals depends upon the presence of bound bacterial cardiolipin and phospholipid molecules; when they were removed, the complex failed to crystallize. The experiments open the way to an atomic structure of an F-ATPase complex.  相似文献   

18.
A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN.  相似文献   

19.
A Cu-containing nitrous oxide reductase (HdN2OR) from a methylotrophic denitrifying bacterium, Hyphomicrobium denitrificans A3151, has been aerobically prepared and spectroscopically characterized. Purple and blue forms of HdN2OR have been isolated. Each form is a homodimer comprising monomers with a molecular mass of 65 kDa. The visible absorption spectrum of the purple form (designated as form A) exhibits three absorption bands at 480 nm, 540 nm, and 650 nm, with a shoulder near 780 nm, and that of the blue form (designated as form B) shows only one absorption band at 650 nm. Reversible spectral changes, between those of forms A and B, are observed on treatment of these forms with redox reagents. Forms A and B are oxidized and reduced forms, respectively. The 77-K EPR spectrum of form A indicates a seven-line copper hyperfine structure centered at gparallel (gparallel=2.18, Aparallel=4.5 mT), which is characteristic of a mixed-valence binuclear CuA site (Amv), and that of form B exhibits a broad featureless signal (g=2.06). The various spectral data of HdN2OR suggest that form A contains Amv and a mixed-valence tetranuclear CuZ site (Zmv*), while form B includes reduced CuA (Ared) and Zmv*. The pH profiles of N2OR activity of the two forms are similar to each other, and the specific activity at optimum pH 8.8 was estimated to be 45 +/- 5 and 29 +/- 3 micromol.min(-1).mg(-1) for forms A and B, respectively.  相似文献   

20.
The membrane-bound hydrogenase from Paracoccus denitrificans was purified 68-fold with a yield of 14.6%. The final preparation had a specific activity of 161.9 mumol H2 min-1 (mg protein)-1 (methylene blue reduction). Purification involved solubilization by Triton X-114, phase separation, chromatography on DEAE-Sephacel, ammonium-sulfate precipitation and chromatography on Procion-red HE-3B-Sepharose. Gel electrophoresis under denaturing conditions revealed two non-identical subunits with molecular masses of 64 kDa and 34 kDa. The molecular mass of the native enzyme was 100 kDa, as estimated by FPLC gel filtration in the presence of Chaps, a zwitterionic detergent. The isoelectric point of the Paracoccus hydrogenase was 4.3. Metal analysis of the purified enzyme indicated a content of 0.6 nickel and 7.3 iron atoms/molecule. ESR spectra of the reduced enzyme exhibited a close similarity to the membrane-bound hydrogenase from Alcaligenes eutrophus H16 with g values of 1.86, 1.92 and 1.98. The half-life for inactivation under air at 20 degrees C was 8 h. The Paracoccus hydrogenase reduced several electron acceptors, namely methylene blue, benzyl viologen, methyl viologen, menadione, cytochrome c, FMN, 2,6-dichloroindophenol, ferricyanide and phenazine methosulfate. The highest activity was measured with methylene blue (V = 161.9 U/mg; Km = 0.04 mM), whereas benzyl and methyl viologen were reduced at distinctly lower rates (16.5 U/mg and 12.1 U/mg, respectively). The native hydrogenase from P. denitrificans cross-reacted with purified antibodies raised against the membrane-bound hydrogenase from A. eutrophus H16. The corresponding subunits from both enzymes also showed immunological relationship. All reactions were of partial identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号