首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins constituting the presynaptic machinery of vesicle release undergo substantial conformational changes during the process of exocytosis. While changes in the conformation make proteins vulnerable to aggregation and degradation, little is known about synaptic chaperones which counteract these processes. We show that the cell adhesion molecule CHL1 directly interacts with and regulates the activity of the synaptic chaperones Hsc70, CSP and αSGT. CHL1, Hsc70, CSP and αSGT form predominantly CHL1/Hsc70/αSGT and CHL1/CSP complexes in synapses. Among the various complexes formed by CHL1, Hsc70, CSP and αSGT, SNAP25 and VAMP2 induce chaperone activity only in CHL1/Hsc70/αSGT and CHL1/CSP complexes, respectively, indicating a remarkable selectivity of a presynaptic chaperone activity for proteins of the exocytotic machinery. In mice with genetic ablation of CHL1, chaperone activity in synapses is reduced and the machinery for synaptic vesicle exocytosis and, in particular, the SNARE complex is unable to sustain prolonged synaptic activity. Thus, we reveal a novel role for a cell adhesion molecule in selective activation of the presynaptic chaperone machinery.  相似文献   

2.
We have examined the roles of Hsc70 and auxilin in the uncoating of clathrin-coated vesicles (CCVs) during neuronal endocytosis. We identified two peptides that inhibit the ability of Hsc70 and auxilin to uncoat CCVs in vitro. When injected into nerve terminals, these peptides inhibited both synaptic transmission and CCV uncoating. Mutation of a conserved HPD motif within the J domain of auxilin prevented binding to Hsc70 in vitro and injecting this mutant protein inhibited CCV uncoating in vivo, demonstrating that the interaction of auxilin with Hsc70 is critical for CCV uncoating. These studies establish that auxilin and Hsc70 participate in synaptic vesicle recycling in neurons and that an interaction between these proteins is required for CCV uncoating.  相似文献   

3.
Auxilin is a brain-specific DnaJ homolog that is required for Hsc70 to dissociate clathrin from bovine brain clathrin-coated vesicles. However, Hsc70 is also involved in uncoating clathrin-coated vesicles formed at the plasma membrane of non-neuronal cells suggesting that an auxilin homolog may be required for uncoating in these cells. One candidate is cyclin G-associated kinase (GAK), a 150-kDa protein expressed ubiquitously in various tissues. GAK has a C-terminal domain with high sequence similarity to auxilin; like auxilin this C-terminal domain consists of three subdomains, an N-terminal tensin-like domain, a clathrin-binding domain, and a C-terminal J-domain. Western blot analysis shows that GAK is present in rat liver, bovine testes, and bovine brain clathrin-coated vesicles. More importantly, liver clathrin-coated vesicles, which contain GAK but not auxilin, are uncoated by Hsc70, suggesting that GAK acts as an auxilin homolog in non-neuronal cells. In support of this view, the clathrin-binding domain of GAK alone induces clathrin polymerization into baskets and the combined clathrin-binding domain and J-domain of GAK supports uncoating of AP180-clathrin baskets by Hsc70 at pH 7 and induces Hsc70 binding to clathrin baskets at pH 6. Immunolocalization studies suggest that GAK is a cytosolic protein that is concentrated in the perinuclear region; it appears to be highly associated with the trans-Golgi where the budding of clathrin-coated vesicles occurs. We propose that GAK is a required cofactor for the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells.  相似文献   

4.
During clathrin-mediated endocytosis Hsc70, supported by the J-domain protein auxilin, uncoats clathrin-coated vesicles. Auxilin contains both a clathrin-binding domain and a J-domain that binds Hsc70, and it has been suggested that these two domains are both necessary and sufficient for auxilin activity. To test this hypothesis, we created a chimeric protein consisting of the J-domain of auxilin linked to the clathrin-binding domain of the assembly protein AP180. This chimera supported uncoating, but unlike auxilin it acted stoichiometrically rather than catalytically because, like Hsc70, it remained associated with the uncoated clathrin. This observation supports our proposal that Hsc70 chaperones uncoated clathrin by inducing formation of a stable Hsc70-clathrin-AP complex. It also shows that Hsc70 acts by dissociating individual clathrin triskelions rather than cooperatively destabilizing clathrin-coated vesicles. Because the chimera lacks the C-terminal subdomain of the auxilin clathrin-binding domain, it seemed possible that this subdomain is required for auxilin to act catalytically, and indeed its deletion caused auxilin to act stoichiometrically. In contrast, deletion of the N-terminal subdomain weakened auxilin-clathrin binding and prevented auxilin from polymerizing clathrin. Therefore the C-terminal subdomain of the clathrin-binding domain of auxilin is required for auxilin to act catalytically, whereas the N-terminal subdomain strengthens auxilin-clathrin binding.  相似文献   

5.
When Hsc70 uncoats clathrin-coated vesicles in an auxilin- and ATP-dependent reaction, a single round of rapid uncoating occurs followed by very slow steady-state uncoating. We now show that this biphasic time course occurs because Hsc70 sequentially forms two types of complex with the dissociated clathrin triskelions. The first round of clathrin uncoating is driven by formation of a pre-steady-state assembly protein (AP)-clathrin-Hsc70-ADP complex. Then, following exchange of ADP with ATP, a steady-state AP-clathrin-Hsc70-ATP complex forms that ties up Hsc70, preventing further uncoating. This steady-state complex forms only during uncoating in the presence of APs; in the absence of APs, Hsc70 rapidly dissociates from the uncoated clathrin and continues to carry out uncoating. Whether it is complexed with ATP or ADP, the steady-state complex has very different properties from the pre-steady-state complex in that it cannot be immunoprecipitated by anti-clathrin antibodies and is readily dissociated by fast protein liquid chromatography. Remarkably, when the steady-state complex is incubated with uncoated vesicle membranes in ATP, the pre-steady-state complex reforms, suggesting that the clathrin triskelions in the steady-state complex rebind to the membranes and are again uncoated by Hsc70. We propose that Hsc70 not only uncoats clathrin but also chaperones it to prevent it from inappropriately polymerizing in the cell cytosol and primes it to reform clathrin-coated pits.  相似文献   

6.
A trimeric protein complex functions as a synaptic chaperone machine   总被引:12,自引:0,他引:12  
We identify a chaperone complex composed of (1) the synaptic vesicle cysteine string protein (CSP), thought to function in neurotransmitter release, (2) the ubiquitous heat-shock protein cognate Hsc70, and (3) the SGT protein containing three tandem tetratricopeptide repeats. These three proteins interact with each other to form a stable trimeric complex that is located on the synaptic vesicle surface, and is disrupted in CSP knockout mice. The CSP/SGT/Hsc70 complex functions as an ATP-dependent chaperone that reactivates a denatured substrate. SGT overexpression in cultured neurons inhibits neurotransmitter release, suggesting that the CSP/SGT/Hsc70 complex is important for maintenance of a normal synapse. Taken together, our results identify a novel trimeric complex that functions as a synapse-specific chaperone machine.  相似文献   

7.
By screening for Drosophila mutants exhibiting aberrant bride of sevenless (Boss) staining patterns on eye imaginal disc epithelia, we have recovered a point mutation in Hsc70-4, the closest homologue to bovine clathrin uncoating ATPase. Although the mutant allele was lethal, analysis of mutant clones generated by FLP/FRT recombination demonstrated that the Sevenless-mediated internalization of Boss was blocked in mutant Hsc70-4 eye disc epithelial cells. Endocytosis of other probes was also greatly inhibited in larval Garland cells. Immunostaining and EM analysis of the mutant cells revealed disruptions in the organization of endosomal/lysosomal compartments, including a substantial reduction in the number of clathrin-coated structures in Garland cells. The Hsc70-4 mutation also interacted genetically with a dominant-negative mutant of dynamin, a gene required for the budding of clathrin-coated vesicles (CCVs). Consistent with these phenotypes, recombinant mutant Hsc70 proteins exhibited diminished clathrin uncoating activity in vitro. Together, these data provide genetic support for the long-suspected role of Hsc70 in clathrin-mediated endocytosis, at least in part by inhibiting the uncoating of CCVs.  相似文献   

8.
Synaptic transmission depends on the efficient loading of transmitters into synaptic vesicles by vesicular neurotransmitter transporters. The vesicular monoamine transporter-2 (VMAT2) is essential for loading monoamines into vesicles and maintaining normal neurotransmission. In an effort to understand the regulatory mechanisms associated with VMAT2, we have embarked upon a systematic search for interacting proteins. Glutathione-S-transferase pull-down assays combined with mass spectrometry led to the identification of the 70-kDa heat shock cognate protein (Hsc70) as a VMAT2 interacting protein. Co-immunoprecipitation experiments in brain tissue and heterologous cells confirmed this interaction. A direct binding was observed between the amino terminus and the third cytoplasmic loop of VMAT2, as well as, a region containing the substrate binding and the carboxy-terminal domains of Hsc70. Furthermore, VMAT2 and Hsc70 co-fractionated with purified synaptic vesicles obtained from a sucrose gradient, suggesting that this interaction occurs at the synaptic vesicle membrane. The functional significance of this novel VMAT2/Hsc70 interaction was examined by performing vesicular uptake assays in heterologous cells and purified synaptic vesicles from brain tissue. Recombinant Hsc70 produced a dose-dependent inhibition of VMAT2 activity. This effect was mimicked by the closely related Hsp70 protein. In contrast, VMAT2 activity was not altered in the presence of previously denatured Hsc70 or Hsp70, as well as the unrelated Hsp60 protein; confirming the specificity of the Hsc70 effect. Finally, a purified Hsc70 fragment that binds VMAT2 was sufficient to inhibit VMAT2 activity in synaptic vesicles. Our results suggest an important role for Hsc70 in VMAT2 function and regulation.  相似文献   

9.
The budding of clathrin-coated vesicles is essential for protein transport. After budding, clathrin must be uncoated before the vesicles can fuse with other membranous structures. In vitro, the molecular chaperone Hsc70 uncoats clathrin-coated vesicles in an ATP-dependent process that requires a specific J-domain protein such as auxilin. However, there is little evidence that either Hsc70 or auxilin is essential in vivo. Here we show that C. elegans has a single auxilin homologue that is identical to mammalian auxilin in its in vitro activity. When RNA-mediated interference (RNAi) is used to inhibit auxilin expression in C. elegans, oocytes show markedly reduced receptor-mediated endocytosis of yolk protein tagged with green fluorescent protein (GFP). In addition, most of these worms arrest during larval development, exhibit defective distribution of GFP-clathrin in many cell types, and show a marked change in clathrin dynamics, as determined by fluorescence recovery after photobleaching (FRAP). We conclude that auxilin is required for in vivo clathrin-mediated endocytosis and development in C. elegans.  相似文献   

10.
Clathrin uncoating: Auxilin comes to life   总被引:5,自引:0,他引:5  
The DnaJ protein auxilin has been extensively studied in vitro as a cofactor for uncoating clathrin-coated vesicles by the chaperone Hsc70. Recent studies provide the first evidence that auxilin plays this role in vivo, and work on a new mammalian auxilin suggests the protein may have more complex cellular functions.  相似文献   

11.
A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70.  相似文献   

12.
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.  相似文献   

13.
It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans‐synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease‐associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP‐43, α‐synuclein, and the microtubule‐associated protein tau, can be driven out of the cell by an Hsc70 co‐chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.  相似文献   

14.
Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis   总被引:2,自引:0,他引:2  
The ATP-dependent dissociation of clathrin from clathrin-coated vesicles (CCVs) by the molecular chaperone Hsc70 requires J-domain cofactor proteins, either auxilin or cyclin-G-associated kinase (GAK). Both the nerve-specific auxilin and the ubiquitous GAK induce CCVs to bind to Hsc70. The removal of auxilin or GAK from various organisms and cells has provided definitive evidence that Hsc70 uncoats CCVs in vivo. In addition, evidence from various studies has suggested that Hsc70 and auxilin are involved in several other key processes that occur during clathrin-mediated endocytosis. First, Hsc70 and auxilin are required for the clathrin exchange that occurs during coated-pit invagination and constriction; this clathrin exchange may catalyze any rearrangement of the clathrin-coated pit (CCP) structure that is required during invagination and constriction. Second, Hsc70 and auxilin may chaperone clathrin after it dissociates from CCPs so that it does not aggregate in the cytosol. Third, auxilin and Hsc70 may be involved in the rebinding of clathrin to the plasma membrane to form new CCPs and independently appear to chaperone adaptor proteins so that they can also rebind to membranes to nucleate the formation of new CCPs. Finally, if formation of the curved clathrin coat induces membrane curvature, then Hsc70 and auxilin provide the energy for this curvature by inducing ATP-dependent clathrin exchange and rearrangement during endocytosis and ATP-dependent dissociation of clathrin at the end of the cycle so that it is energetically primed to rebind to the plasma membrane.  相似文献   

15.
Vesicle budding requires recruitment of a coat, which must then be removed to allow fusion with the target compartment. In vitro assays have implicated Hsc70 and auxilin family members as key players in clathrin-coated vesicle uncoating. New in vivo studies now show that this is indeed the case and reveal additional functions of the Hsc70/auxilin complex.  相似文献   

16.
BACKGROUND: In eukaryotic cells, clathrin-coated vesicles transport specific cargo from the plasma membrane and trans-Golgi network to the endosomal system. Removal of the clathrin coat in vitro requires the uncoating ATPase Hsc70 and its DnaJ cofactor auxilin. To date, a requirement for auxilin and Hsc70 in clathrin function in vivo has not been demonstrated. RESULTS: The Saccharomyces cerevisiae SWA2 gene, previously identified in a synthetic lethal screen with arf1, was cloned and found to encode a protein with a carboxy-terminal DnaJ domain which is homologous to that of auxilin. Like auxilin, Swa2p has a clathrin-binding domain and is able to stimulate the ATPase activity of Hsc70. The swa2-1 allele recovered from the original screen carries a point mutation in its tetratricopeptide repeat (TPR) domain, a motif not found in auxilin but known in other proteins to mediate interaction with heat-shock proteins. Swa2p fractionates in the cytosol and appears to be heavily phosphorylated. Disruption of SWA2 causes slow growth and several phenotypes that are very similar to those exhibited by clathrin mutants. Furthermore, the swa2Delta mutant exhibits a significant increase in membrane- associated or -assembled clathrin relative to a wild-type strain. CONCLUSIONS: These results indicate that Swa2p is a clathrin-binding protein required for normal clathrin function in vivo. They suggest that Swa2p is the yeast ortholog of auxilin and has a role in disassembling clathrin, not only in uncoating clathrin-coated vesicles but perhaps in preventing unproductive clathrin assembly in vivo.  相似文献   

17.
The role of clathrin-coated vesicles in receptor-mediated endocytosis is conserved among eukaryotes, and many of the proteins required for clathrin coat assembly and disassembly have orthologs in yeast and mammals. In yeast, dozens of proteins have been identified as regulators of the multistep reaction required for endocytosis, including those that regulate disassembly of the clathrin coat. In mammalian systems, clathrin coat disassembly has been reconstituted using neuronal clathrin baskets mixed with the purified chaperone ATPase 70-kDa heat shock cognate (Hsc70), plus a clathrin-specific co-chaperone, such as the synaptic protein auxilin. Yet, despite previous characterization of the yeast Hsc70 ortholog, Ssa1p, and the auxilin-like ortholog, Swa2p, testing mechanistic models for disassembly of nonneuronal clathrin coats has been limited by the absence of a functional reconstitution assay. Here we use single-particle burst analysis spectroscopy, in combination with fluorescence correlation spectroscopy, to follow the population dynamics of fluorescently tagged yeast clathrin baskets in the presence of purified Ssa1p and Swa2p. An advantage of this combined approach for mechanistic studies is the ability to measure, as a function of time, changes in the number and size of objects from a starting population to the reaction products. Our results indicate that Ssa1p and Swa2p cooperatively disassemble yeast clathrin baskets into fragments larger than the individual triskelia, suggesting that disassembly of clathrin-coated vesicles may proceed through a partially uncoated intermediate.  相似文献   

18.
Previous in vitro studies of cysteine-string protein (CSP) imply a potential role for the clathrin-uncoating ATPase Hsc70 in exocytosis. We show that hypomorphic mutations in Drosophila Hsc70-4 (Hsc4) impair nerve-evoked neurotransmitter release, but not synaptic vesicle recycling in vivo. The loss of release can be restored by increasing external or internal Ca(2+) and is caused by a reduced Ca(2+) sensitivity of exocytosis downstream of Ca(2+) entry. Hsc4 and CSP are likely to act in common pathways, as indicated by their in vitro protein interaction, the similar loss of evoked release in individual and double mutants, and genetic interactions causing a loss of release in trans-heterozygous hsc4-csp double mutants. We suggest that Hsc4 and CSP cooperatively augment the probability of release by increasing the Ca(2+) sensitivity of vesicle fusion.  相似文献   

19.
The large GTPase dynamin is required for budding of clathrin-coated vesicles from the plasma membrane, after which the clathrin coat is removed by the chaperone Hsc70 and its cochaperone auxilin. Recent evidence suggests that the GTP-bound form of dynamin may recruit factors that execute the fission reaction. Here, we show that dynamin:GTP binds to Hsc70 and auxilin. We mapped two domains within auxilin that interact with dynamin, and these domains inhibit endocytosis when overexpressed in HeLa cells or when added in a permeable cell assay. The inhibition is not due to impairment of clathrin uncoating or to altered clathrin distribution in cells. Thus, in addition to its requirement for clathrin uncoating, our results show that auxilin also acts during the early steps of clathrin-coated vesicle formation. The data suggest that dynamin regulates the action of molecular chaperones in vesicle budding during endocytosis.  相似文献   

20.
We show that a single gene locus gives rise to two fully processed and functional miRNAs, i.e. that due to imperfect base pairing, two distinct microRNAs (miRNAs) can be produced from the fully complementary DNA strands. The antisense strand encodes miR-214, which is transcribed by its own promoter, whereas a novel miRNA, miR-3120, is co-expressed with its host gene mRNA. We also found that miR-3120 regulates important aspects of cellular function that are similar to that of its host gene, dynamin-3. miR-3120 was found to be located in neuronal cell bodies and to target Hsc70 and auxilin, and its lentivirus-mediated expression inhibited the uncoating of clathrin-coated vesicles. Finally, mirror miRNAs are likely to represent a new group of miRNAs with complex roles in coordinating gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号