首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of Atriplex spongiosa and Suaeda monoica to Salinity   总被引:7,自引:7,他引:7       下载免费PDF全文
The growth and tissue water, K+, Na+, Cl, proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly due to increased succulence. S. monoica showed both a greater increase in succulence (at low salinities) and tolerance of high salinities than A. spongiosa. Both species had high affinities for Na+ and maintained constant but low shoot K+ contents with increasing salinity. These trends were more marked with S. monoica in which Na+ stimulated the accumulation of K+ in roots. An association between high leaf Na+ accumulation, high osmotic pressure, succulence, and a positive growth response at low salinities was noted. Proline accumulation was observed in shoot tissues with suboptimal water contents. High glycinebetaine contents were found in the shoots of both species. These correlated closely with the sap osmotic pressure and it is suggested that glycinebetaine is the major cytoplasmic osmoticum (with K+ salts) in these species at high salinities. Na+ salts may be preferentially utilized as vacuolar osmotica.  相似文献   

2.
Two nitrogen-fixing Anabaena strains were found to be differentially tolerant to salinity and osmotic stresses. Anabaena torulosa, a brackish-water, salt-tolerant strain, was relatively osmosensitive. Anabaena sp. strain L-31, a freshwater, salt-sensitive strain, on the other hand, displayed significant osmotolerance. Salinity and osmotic stresses affected nitrogenase activity differently. Nitrogen fixation in both of the strains was severely inhibited by the ionic, but not by the osmotic, component of salinity stress. Such differential sensitivity of diazotrophy to salinity-osmotic stresses was observed irrespective of the inherent tolerance of the two strains to salt-osmotic stress. Exogenously added ammonium conferred significant protection against salinity stress but was ineffective against osmotic stress. Salinity and osmotic stresses also affected stress-induced gene expression differently. Synthesis of several proteins was repressed by salinity stress but not by equivalent or higher osmotic stress. Salinity and osmotic stresses induced many common proteins. In addition, unique salt stress- or osmotic stress-specific proteins were also induced in both strains, indicating differential regulation of protein synthesis by the two stresses. These data show that cyanobacterial sensitivity and responses to salinity and osmotic stresses are distinct, independent phenomena.  相似文献   

3.
4.
To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.  相似文献   

5.
The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na+/K+ ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.Salt stress is known to affect plant growth and productivity as a result of its osmotic and ionic stress components. Osmotic stress imposed by salinity is thought to act in the early stages of the response, by reducing cell expansion in growing tissues and causing stomatal closure to minimize water loss. The build-up of ions in photosynthetic tissues leads to toxicity in the later stages of salinity stress and can be reduced by limiting sodium transport into the shoot tissue and compartmentalization of sodium ions into the root stele and vacuoles (Munns and Tester, 2008). The effect of salt stress on plant development was studied in terms of ion accumulation, plant survival, and signaling (Munns et al., 2012; Hasegawa, 2013; Pierik and Testerink, 2014). Most studies focus on traits in the aboveground tissues, because minimizing salt accumulation in leaf tissue is crucial for plant survival and its productivity. This approach has led to the discovery of many genes underlying salinity tolerance (Munns and Tester, 2008; Munns et al., 2012; Hasegawa, 2013; Maathuis, 2014). Another way to estimate salinity stress tolerance is by studying the rate of main root (MR) elongation of seedlings transferred to medium supplemented with high salt concentration. This is how Salt Overly Sensitive mutants were identified, being a classical example of genes involved in salt stress signaling and tolerance (Hasegawa, 2013; Maathuis, 2014). The success of this approach is to be explained by the important role that the root plays in salinity tolerance. Roots not only provide anchorage and ensure water and nutrient uptake, but also act as a sensory system, integrating changes in nutrient availability, water content, and salinity to adjust root morphology to exploit available resources to the maximum capacity (Galvan-Ampudia et al., 2013; Gruber et al., 2013). Understanding the significance of environmental modifications of root system architecture (RSA) for plant productivity is one of the major challenges of modern agriculture (de Dorlodot et al., 2007; Den Herder et al., 2010; Pierik and Testerink, 2014).The RSA of dicotyledonous plants consists of an embryonically derived MR and lateral roots (LRs) that originate from xylem pole pericycle cells of the MR, or from LRs in the case of higher-order LRs. Root growth and branching is mainly guided through the antagonistic action of two plant hormones: auxin and cytokinins (Petricka et al., 2012). Under environmental stress conditions, the synthesis of abscisic acid (ABA), ethylene, and brassinosteroids is known to be induced and to modulate the growth of MRs and LRs (Achard et al., 2006; Osmont et al., 2007; Achard and Genschik, 2009; Duan et al., 2013; Geng et al., 2013). In general, lower concentrations of salt were observed to slightly induce MR and LR elongation, whereas higher concentrations resulted in decreased growth of both MRs and LRs (Wang et al., 2009; Zolla et al., 2010). The reduction of growth is a result of the inhibition of cell cycle progression and a reduction in root apical meristem size (West et al., 2004). However, conflicting results were presented for the effect of salinity on lateral root density (LRD; Wang et al., 2009; Zolla et al., 2010; Galvan-Ampudia and Testerink, 2011). Some studies suggest that mild salinity enhances LR initiation or emergence events, thereby affecting patterning, whereas other studies imply that salinity arrests LR development. The origin of those contradictory observations could be attributable to studying LR initiation and density at single time points, rather than observing the dynamics of LR development, because LR formation changes as a function of root growth rate (De Smet et al., 2012). The dynamics of LR growth and development were characterized previously for the MR region formed before the salt stress exposure, identifying the importance of ABA in early growth arrest of postemerged LRs in response to salt stress (Duan et al., 2013). The effect of salt on LR emergence and initiation was found to differ for MR regions formed prior and subsequent to salinity exposure (Duan et al., 2013), consistent with LR patterning being determined at the root tip (Moreno-Risueno et al., 2010). Yet the effect of salt stress on the reprogramming of the entire RSA on a longer timescale remains elusive.Natural variation in Arabidopsis (Arabidopsis thaliana) is a great source for dissecting the genetic components underlying phenotypic diversity (Trontin et al., 2011; Weigel, 2012). Genes underlying phenotypic plasticity of RSA to environmental stimuli were also found to have high allelic variation leading to differences in root development between different Arabidopsis accessions (Rosas et al., 2013). Supposedly, genes responsible for phenotypic plasticity of the root morphology to different environmental conditions are under strong selection for adaptation to local environments. Various populations of Arabidopsis accessions were used to study natural variation in ion accumulation and salinity tolerance (Rus et al., 2006; Jha et al., 2010; Katori et al., 2010; Roy et al., 2013). In addition, a number of studies focusing on the natural variation in RSA have been published, identifying quantitative trait loci and allelic variation for genes involved in RSA development under control conditions (Mouchel et al., 2004; Meijón et al., 2014) and nutrient-deficient conditions (Chevalier et al., 2003; Gujas et al., 2012; Gifford et al., 2013; Kellermeier et al., 2013; Rosas et al., 2013). Exploring natural variation not only expands the knowledge of genes and molecular mechanisms underlying biological processes, but also provides insight on how plants adapt to challenging environmental conditions (Weigel, 2012) and whether the mechanisms are evolutionarily conserved. The early growth arrest of newly emerged LRs upon exposure to salt stress was observed to be conserved among the most commonly used Arabidopsis accessions Columbia-0 (Col-0), Landsberg erecta, and Wassilewskija (Ws; Duan et al., 2013). By studying salt stress responses of the entire RSA and a wider natural variation in root responses to stress, one could identify new morphological traits that are under environmental selection and possibly contribute to stress tolerance.In this work, we not only identify the RSA components that are responsive to salt stress, but we also describe the natural variation in dynamics of salt-induced changes leading to redistribution of root mass and different root morphology. The growth dynamics of MRs and LRs under different salt stress conditions were described by fitting a set of quadratic growth functions (root-fit) to individual RSA components. Studying salt-induced changes in RSA dynamics of 31 Arabidopsis accessions revealed four major strategies conserved among the accessions. Those four strategies were due to differences in salt stress sensitivity of individual RSA components (i.e. growth rates of MRs and LRs, and increases in the number of emerged LRs). This diversity in root morphology responses caused by salt stress was observed to be partially associated with differences in ABA, but not ethylene sensitivity. In addition, we observed that a number of accessions exhibiting a relatively strong inhibition of LR elongation showed a smaller increase in the Na+/K+ ratio in shoot tissue after exposure to salt stress. Our results imply that different RSA strategies identified in this study reflect diverse adaptations to different soil conditions and thus might contribute to efficient water extraction and ion compartmentalization in their native environments.  相似文献   

6.
Bowman, W. D. 1988. Ionic and water relations responses of twopopulations of a non-halophyte to salinity.–J. exp. Bot39: 97–105 Salinity-induced changes in the ionic and water relations inplants from two naturally-occurring populations of the C4 non-halophyteAndropogon glomeratus were measured to detect differences inthe capacity to adjust osmotic potentials and in ion contentpotentially responsible for the osmotic adjustment Pressure-volumecurves and leaf ion content were measured in plants from twopopulations, salt marsh and inland, after long-term exposureto three salinity levels. Osmotic adjustment and decreases inthe bulk tissue elasticity occurred to a similar extent in bothpopulations with increasing salinity. Cl concentrationsincreased with increasing salinity in both populations, whereasleaf Na+ concentrations increased only in the inland population,but were higher at all salinities in the marsh population. K+concentrations changed little with increasing salinity. Prolineconcentrations increased only at the highest salinity level,and did not difler significantly between populations. Theseresults suggest a role for Na+ uptake and regulation in osmoticadjustment in the marsh population, contrasting with studiesof salt tolerance in other nonhalophytic grasses  相似文献   

7.
Hibiscus tiliaceus (Hau) is a pantropical mangrove associate that usually occurs in coastal ecosystems where substrate salinity is relatively high, but it also inhabits upland habitats in Hawaii. Cuttings from three populations on the island of Oahu, Hawaii, were collected and grown in the glasshouse under two levels of substrate salinity (0 and 335 mOsm kg-1) and three light treatments (0%, 50%, and 90% shade). Photosynthetic gas exchange, biomass allocation, and accumulation were studied in relation to salinity and light. Salinity reduced net CO2 assimilation in the upland population but had no effect or stimulated photosynthesis in the coastal populations, whereas increasing salinity decreased stomatal conductance in all populations and therefore increased water-use efficiency. The degree to which photosynthesis was inhibited by salinity was inversely proportional to the salinity of the source population, indicating a loss of salinity tolerance in upland plants. Light had a stronger effect on leaf area ratio (LAR) and leaf mass per area (LMA), whereas salinity had a stronger effect on leaf water content, internode length, and plant biomass. Salinity reduced total new biomass by 58%, 50%, and 34% in full sun, 50% shade, and 90% shade, respectively, but this response did not differ between populations. Salinity reduced the photosynthesis, but not growth, of upland plants because increased allocation to photosynthetic tissue increased LAR to compensate for inhibition of photosynthesis by salinity.  相似文献   

8.
9.
10.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.  相似文献   

11.
Four ecotypes of the species Lycopersicon cheesmanii ssp. minor (Hook.) C.H. Mull. from the Galapagos Islands were compared with L. esculentum Mill cv. VF 36 with respect to salt tolerance. The L. cheesmanii ecotype that proved most salt-tolerant was selected for detailed comparison with the L. esculentum cultivar. Plants were grown in modified Hoagland solution salinized with synthetic seawater salt mix. Growth rates under saline conditions were examined and amino acid, sugar, total amino nitrogen, free acidity, and Na and K levels in the tissues of the most and least tolerant plants were measured under salt stress and nonstress conditions. Results indicate that all Galapagos ecotypes were far more salt-tolerant than was the esculentum cultivar. They could survive in full strength seawater nutrient solution while the esculentum cultivar could not in most cases withstand levels higher than 50% seawater. Growth rates were reduced in both species under saline conditions but the esculentum cultivar was more severely affected. High levels of total amino nitrogen, specific amino acids, and free acidity along with low sodium content were found in the salt stressed VF 36 cultivar. The opposite responses were noted in the salt stressed treatments of the Galapagos ecotype. Tissue sugar levels did not appear to be similarly correlated with salt stress in either species. Potassium content fell sharply during salinization in the Galapagos ecotype while in the esculentum cultivar it declined relatively little even at high levels of salinity.  相似文献   

12.

In this recent era, several approaches have been developed to alleviate the adverse effects of salinity stress in different plants. However, some of them are not eco-friendly. In this context, evolving sustainable approaches which enhance the productivity of saline soil without harming the environment are necessary. Many recent studies showed that plant growth-promoting rhizobacteria (PGPR) are known to confer salinity tolerance to plants. Salt-stressed plants inoculated with PGPR enhance the growth and productivity of crops by reducing oxidative damage, maintaining ionic homeostasis, enhancing antioxidant machinery, and regulating gene expressions. The PGPR also regulates the photosynthetic attributes such as net photosynthetic rate, chlorophyll, and carotenoid contents and enhances the salinity tolerance to plants. Moreover, PGPR has a great role in the enhancement of phytohormones and secondary metabolites synthesis in plants under salt stress. This review summarizes the current reports of the application of PGPR in plants under salt stress and discusses the PGPR-mediated mechanisms in plants of salt tolerance. This review also discusses the potential role of PGPR in cross-talk with phytohormones and secondary metabolites to alleviate salt stress and highlights the research gaps where further research is needed.

  相似文献   

13.
The responses of division rate, cell volume, cellular carbon (C) and nitrogen (N), cellular pigments and optical characteristics to changes in salinity were examined in the dinoflagellate Heterocapsa circularisquama. The physiological and optical characteristics of H. circularisquama were significantly affected by changes in salinity. When cells were exposed to different salinities, they exhibited physiological acclimation by adjusting their cellular properties associated with growth. This could be a beneficial tactic for ensuring proliferation and limiting damages induced by adverse environmental factors. The results of this study could be essential for assisting in the development of growth models for H. circularisquama.  相似文献   

14.
Silicon (Si) application shows beneficial effects on plant growth; however, its effects on the phytohormone and enzymatic antioxidant regulation have not been fully understood. We studied the effects of short-term (6, 12, and 24 h) silicon (0.5, 1.0, and 2.0 mM) application on salinity (NaCl)-induced phytohormonal [abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA)] and antioxidant regulation in Oryza sativa. The results showed that Si treatments significantly increased rice plant growth compared to controls under salinity stress. Si treatments reduced the sodium accumulation resulting in low electrolytic leakage and lipid peroxidation compared to control plants under salinity stress. Enzymatic antioxidant (catalase, peroxidase and polyphenol oxidase) responses were more pronounced in control plants than in Si-treated plants under salinity stress. Stress- and defense-related phytohormones like JA were significantly downregulated and SA was irregular after short-term Si applications under salinity stress compared to control. Conversely, ABA was significantly higher after 6 and 12 h but insignificant after 24 h in Si-treated plants under salinity stress. After 6 and 12 h, Si and salinity stress resulted in upregulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase 1 and 4 (NCED1 and 4), whereas 24-h treatments significantly downregulated the expressions of these genes compared to those in the control. NCED3 expression increased after 6 and 24 h but it was insignificant after 12 h of Si application compared to control. The current findings indicate that increasing the Si concentrations for longer periods of time can regulate the salinity-induced stress by modulating phytohormonal and enzymatic antioxidants’ responses.  相似文献   

15.
河西走廊不同生态型芦苇对干旱和盐渍胁迫的响应调节   总被引:20,自引:0,他引:20  
长期稳定的自然变异植物种是研究植物适应逆境机制的理想实验体系。就河西走廊芦苇不同生态型的划分、4种生态型的光合响应调节、抗氧化保护机制、膜流动性修饰机制和渗透调节机制中的响应特征、胁迫诱导的特异表达成分等作了概述。  相似文献   

16.
Measurements of gas exchange characteristics were made on intact, attached leaves of hydroponically grown seedlings of Avicennia marina (Forstk.) Vierh. var australasica (Walp.) Moldenke as the NaCl concentration of the culture solution was varied by step changes of 50 millimolar NaCl every 2nd day from 50 to 500 to 50 millimolar NaCl. The CO2 assimilation rate, stomatal conductance, intercellular CO2 concentration, and evaporation rate decreased at salinities above 250 millimolar NaCl and recovered substantially upon return to the original salinity.

The assimilation rate was measured as a function of the intercellular CO2 concentration [A(ci) curve]. The lower linear portion of this curve was insensitive to variation in salinity, whereas the upper nonlinear portion declined with increasing salinity, indicating a reduction in the capacity for CO2 assimilation which recovered upon return to the original salinity. Stomatal conductance changed such that the intercellular CO2 concentration measured under normal atmospheric conditions occurred in the transition between the lower, linear and upper nonlinear portions of the A(ci) curve. Thus, stomatal conductance and photosynthetic capacity together co-limited the assimilation rate. The changes in gas exchange characteristics were such that water loss was minimal relative to carbon gain.

  相似文献   

17.
Russian Journal of Plant Physiology - This study was carried out to evaluate the effects of salinity stress on ion distribution in different alfalfa genotypes and its relation with stress tolerance...  相似文献   

18.
The responses of the larvae of the cirripede barnacle Peltogasterella gracilis (Crustacea: Cirripedia: Rhizocephala) that parasitizes the hermit crab Pagurus pectinatus to different combinations of seawater temperature (25, 22, 20, 16, and 12°C) and salinity (from 34 to 8) were studied in a laboratory. The nauplii of P. gracilis completed the entire cycle of development at 22 to 12°C in a narrow range of salinity (from 34 to 28), which agrees well with the environmental conditions of the crab hosts' habitat. At favorable temperatures (22–20°C) and salinity (34–28), the nauplii reached the cypris stage in 88 ± 2 h, while at 12°C and 34–30, the naupliar development took 156 ± 5 h. The cypris larvae appeared more resistant compared with the nauplii, in terms of changes in both the temperature and salinity of seawater. They actively swam at all experimental temperatures and in the salinity range of 34–18. At temperatures (22–16°C) and salinities (34–24) favorable for the cyprids, their longevity in plankton equaled 6–10 days. Thus, the nauplii of P. gracilis is the more vulnerable stage of development in the life cycle of this parasitic barnacle. The tolerance against changes in environmental factors is due to the adaptive capabilities of parasitic larvae and the environmental conditions in the habitats of its host, a typical marine crustacean. The insignificant parasitization rate of the hermit crab by its rhizocephalan parasite may be explained by the death of the nauplii of P. gracilis, which occurs when they enter to the surface water layer.  相似文献   

19.
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.  相似文献   

20.
Sheng  Huajin  Zeng  Jian  Liu  Yang  Wang  Xiaolu  Wang  Yi  Kang  Houyang  Fan  Xing  Sha  Lina  Zhang  Haiqin  Zhou  Yonghong 《Journal of Plant Growth Regulation》2020,39(2):795-808

The effect of Mn and NaCl on growth, mineral nutrients and antioxidative enzymes in two tetroploid wheat genotypes differing in salt tolerance was investigated in this study. 100 mM NaCl and Mn stress significantly inhibited plant growth, photosynthesis and Ca uptake, while stimulated ROS accumulation, MDA and proline content in wheat plants, Mn stress also increased SOD, APX, GR and DHAR activities. Durum wheat (AS780) was less affected by 100 mM NaCl and Mn stress than emmer wheat (AS847) due to more proline production, higher antioxidative enzymes activities and less-affected mineral nutrients. Application of 10 mM NaCl to Mn-stressed durum wheat alleviated Mn-induced damage by reducing Mn accumulation and translocation, while promoting proline accumulation and SOD, APX and GR activities. Irrespective of NaCl level, the combined stress of Mn and NaCl caused more severe oxidative stress, result in further reduction of photosynthetic rate and plant growth in emmer wheat as compared to Mn stress alone. The additively negative effects of NaCl and Mn stress on growth of emmer wheat results from reduced SOD and APX activities as well as Ca, Cu and Fe accumulation in both shoots and roots. These results suggest that salt-tolerant durum wheat is superior to emmer in adapting to Mn stress and the combined stress of salinity and Mn.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号