首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) with in vitro exchange activity specific for RhoA and Cdc42. Like many RhoGEF family members, the in vivo exchange activity of Dbs is restricted in a cell-specific manner. Here we report the characterization of a novel scaffold protein (designated cell cycle progression protein 1 [Ccpg1]) that interacts with Dbs and modulates its in vivo exchange specificity. When coexpressed in mammalian cells, Ccpg1 binds to the Dbl homology/pleckstrin homology domain tandem motif of Dbs and inhibits its exchange activity toward RhoA, but not Cdc42. Expression of Ccpg1 correlates with the ability of Dbs to activate endogenous RhoA in cultured cells, and suppression of endogenous Ccpg1 expression potentiates Dbs exchange activity toward RhoA. The isolated Dbs binding domain of Ccpg1 is not sufficient to suppress Dbs exchange activity on RhoA, thus suggesting a regulatory interaction. Ccpg1 mediates recruitment of endogenous Src kinase into Dbs-containing complexes and interacts with the Rho family member Cdc42. Collectively, our studies suggest that Ccpg1 represents a new class of regulatory scaffold protein that can function as both an assembly platform for Rho protein signaling complexes and a regulatory protein which can restrict the substrate utilization of a promiscuous RhoGEF family member.  相似文献   

2.
Dbl family members are guanine nucleotide exchange factors specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. Dbs, a Dbl family member specific for Cdc42 and RhoA, exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. In this study, the PH domain of Dbs was mutated to impair selectively either guanine nucleotide exchange or phosphoinositide binding in vitro and resulting physiological alterations were assessed. As anticipated, substitution of residues within the PH domain of Dbs integral to the interface with GTPases reduced nucleotide exchange and eliminated the ability of Dbs to transform NIH 3T3 cells. More interestingly, substitutions within the PH domain that prevent interaction with phosphoinositides yet do not alter in vitro activation of GTPases also do not transform NIH 3T3 cell and fail to activate RhoA in vivo despite proper subcellular localization. Therefore, the PH domain of Dbs serves multiple roles in the activation of GTPases and cannot be viewed as a simple membrane-anchoring device. In particular, the data suggest that binding of phosphoinositides to the PH domain within the context of membrane surfaces may direct orientations or conformations of the linked DH and PH domains to regulate GTPases activation.  相似文献   

3.
4.
Dbl family proteins act as guanine nucleotide exchange factors and positive regulators of Rho GTPase function by stimulating formation of the active, GTP-bound state. All Dbl family Rho guanine nucleotide exchange factors possess an invariant tandem domain structure consisting of a Dbl homology (DH) catalytic domain followed by a pleckstrin homology (PH) regulatory domain. We determined previously that the PH domain of Dbs was critical for the intrinsic catalytic activity of the DH domain in vitro and for Dbs transformation in vivo. In this study, we evaluated the role of phosphoinositide binding to the PH domain in regulating the DH domain function of Dbs in vitro and in vivo. We determined that mutation of basic amino acids located within the beta1-beta2 and beta3-beta4 loops of the PH domain resulted in impaired phospholipid binding in vitro, yet full guanine nucleotide exchange activity in vitro was retained for RhoA and Cdc42. Surprisingly, these mutants were compromised in their ability to activate Rho GTPases in vivo and to cause transformation of NIH 3T3 cells. However, Dbs subcellular localization was impaired by these PH domain mutations, supporting a role for phospholipid interactions in facilitating membrane association. Despite the importance of phospholipid binding for Dbs function in vivo, we found that Dbs signaling and transforming activity was not stimulated by phosphatidylinositol 3-kinase activation. We suggest that the PH domain of Dbs facilitates two distinct roles in the regulation of DH domain function, one critical for GTPase association and activation in vitro and one critical for phosphoinositide binding and GTPase interaction in vivo, that together promote Dbs association with membranes.  相似文献   

5.
Activation of Rho-family GTPases involves the removal of bound GDP and the subsequent loading of GTP, all catalyzed by guanine nucleotide exchange factors (GEFs) of the Dbl-family. Despite high sequence conservation among Rho GTPases, Dbl proteins possess a wide spectrum of discriminatory potentials for Rho-family members. To rationalize this specificity, we have determined crystal structures of the conserved, catalytic fragments (Dbl and pleckstrin homology domains) of the exchange factors intersectin and Dbs in complex with their cognate GTPases, Cdc42 and RhoA, respectively. Structure-based mutagenesis of intersectin and Dbs reveals the key determinants responsible for promoting exchange activity in Cdc42, Rac1 and RhoA. These findings provide critical insight into the structural features necessary for the proper pairing of Dbl-exchange factors with Rho GTPases and now allow for the detailed manipulation of signaling pathways mediated by these oncoproteins in vivo.  相似文献   

6.
7.
During Xenopus development, embryonic cells dramatically change their shape and position. Rho family small GTPases, such as RhoA, Rac, and Cdc42, play important roles in this process. These GTPases are generally activated by guanine nucleotide exchange factors (GEFs); however, the roles of RhoGEFs in Xenopus development have not yet been elucidated. We therefore searched for RhoGEF genes in our Xenopus EST database, and we identified several genes expressed during embryogenesis. Among them, we focused on one gene, designated xNET1. It is similar to mammalian NET1, a RhoA-specific GEF. An in vitro binding assay revealed that xNET1 bound to RhoA, but not to Rac or Cdc42. In addition, transient expression of xNET1 activated endogenous RhoA. These results indicated that xNET1 is a GEF for RhoA. Epitope-tagged xNET1 was localized mainly to the nucleus, and the localization was regulated by nuclear localization signals in the N-terminal region of xNET1. Overexpression of either wild-type or a mutant form of xNET1 severely inhibited gastrulation movements. We demonstrated that xNET1 was co-immunoprecipitated with the Dishevelled protein, which is an essential signaling component in the non-canonical Wnt pathway. This pathway has been shown to activate RhoA and regulate gastrulation movements. We propose that xNET1 or a similar RhoGEF may mediate Dishevelled signaling to RhoA in the Wnt pathway.  相似文献   

8.
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose expression causes deregulated growth in NIH 3T3 mouse fibroblasts. Although Rac1 has not been shown to be a substrate for Dbs in either in vitro or in vivo assays, the Rat ortholog of Dbs (Ost) has been shown to bind specifically to GTP.Rac1 in vitro. The dependence of the Rac1/Dbs interaction on GTP suggests that Dbs may in fact be an effector for Rac1. Here we show that the interaction between activated Rac1 and Dbs can be recapitulated in mammalian cells and that the Rac1 docking site resides within the pleckstrin homology domain of Dbs. This interaction is specific for Rac1 and is not observed between Rac1 and several other members of the Rho-specific guanine nucleotide exchange factor family. Co-expression of Dbs with activated Rac1 causes enhanced focus forming activity and elevated levels of GTP.RhoA in NIH 3T3 cells, indicating that Dbs is activated by the interaction. Consistent with this, activated Rac1 co-localizes with Dbs in NIH 3T3 cells, and natively expressed Rac1 relocalizes in response to Dbs expression. To summarize, we have characterized a surprisingly direct pleckstrin homology domain-mediated mechanism through which Rho GTPases can become functionally linked.  相似文献   

9.
Lysophosphatidic acid (LPA) is a serum-derived phospholipid that induces a variety of biological responses in various cells via heterotrimeric G protein-coupled receptors (GPCRs) including LPA1, LPA2, and LPA3. LPA-induced cytoskeletal changes are mediated by Rho family small GTPases, such as RhoA, Rac1, and Cdc42. One of these small GTPases, RhoA, may be activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors (RhoGEFs) under LPA stimulation although the detailed mechanisms are poorly understood. Here, we show that the C terminus of LPA1 and LPA2 but not LPA3 interact with the PDZ domains of PDZ domain-containing RhoGEFs, PDZ-RhoGEF, and LARG, which are comprised of PDZ, RGS, Dbl homology (DH), and pleckstrin homology (PH) domains. In LPA1- and LPA2-transfected HEK293 cells, LPA-induced RhoA activation was observed although the C terminus of LPA1 and LPA2 mutants, which failed to interact with the PDZ domains, did not cause LPA-induced RhoA activation. Furthermore, overexpression of the PDZ domains of PDZ domain-containing RhoGEFs served as dominant negative mutants for LPA-induced RhoA activation. Taken together, these results indicate that formation of the LPA receptor/PDZ domain-containing RhoGEF complex plays a pivotal role in LPA-induced RhoA activation.  相似文献   

10.
Although Vav can act as a guanine nucleotide exchange factor for RhoA, Rac1, and Cdc42, its transforming activity has been ascribed primarily to its ability to activate Rac1. However, because activated Vav, but not Rac-specific guanine nucleotide exchange factors, exhibits very potent focus-forming transforming activity when assayed in NIH 3T3 cells, Vav transforming activity must also involve activation of Rac-independent pathways. In this study, we determined the involvement of other Rho family proteins and their signaling pathways in Vav transformation. We found that RhoA, Rac1, and Cdc42 functions are all required for Vav transforming activity. Furthermore, we determined that Vav activation of nuclear factor-kappaB and the Jun NH2-terminal kinase mitogen-activated protein kinase (MAPK) is necessary for full transformation by Vav, whereas p38 MAPK does not seem to play an important role. We also determined that Vav is a weak activator of Elk-1 via a Ras- and MAPK/extracellular signal-regulated kinase kinase-dependent pathway, and this activity was essential for Vav transformation. Thus, we conclude that full Vav transforming activation is mediated by the activation of multiple small GTPases and their subsequent activation of signaling pathways that regulate changes in gene expression. Because Vav is activated by the epidermal growth factor receptor and other tyrosine kinases involved in cancer development, defining the role of aberrant Vav signaling may identify activities of receptor tyrosine kinases important for human oncogenesis.  相似文献   

11.
The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF. Because all three RH-RhoGEFs can localize to the plasma membrane upon expression of activated Gα13, cellular localization of these RhoGEFs has been proposed as a mechanism for controlling their activity. We use a small molecule-regulated heterodimerization system to rapidly control the localization of RH-RhoGEFs. Acute localization of the proteins to the plasma membrane activates RhoA within minutes and to levels that are comparable with activation of RhoA by hormonal stimulation of G protein-coupled receptors. The catalytic activity of membrane-localized RhoGEFs is not dependent on activated Gα13. We further show that the conserved RH domains can rewire two different RacGEFs to activate Rac1 in response to a traditional activator of RhoA. Thus, RH domains act as independent detectors for activated Gα13 and are sufficient to modulate the activity of RhoGEFs by hormones via mediating their localization to substrate, membrane-associated RhoA.  相似文献   

12.
Dbs was identified in a cDNA-based expression screen for sequences that can cause malignant growth when expressed in murine fibroblasts. In previous studies we have shown that Dbs is a Rho-specific guanine nucleotide exchange factor that can activate RhoA and/or Cdc42 in a cell-specific manner. In this current study we have used a combination of genetic and pharmacological approaches to examine the relative contributions of RhoA x PRK and RhoA x ROCK signaling to Dbs transformation. Our analysis indicates that ROCK is activated in Dbs-transformed cells and that Dbs transformation is dependent upon ROCK I activity. In contrast, there appears to be no requirement for PRK activation in Dbs transformation. Dbs transformation is also associated with increased phosphorylation of myosin light chain and stress fiber formation, both of which occur in a ROCK-dependent manner. Suppression of myosin light chain expression by small interfering RNAs impairs Dbs focus formation, thus establishing a direct link between actinomyosin contraction and Rho-specific guanine nucleotide exchange factor transformation.  相似文献   

13.
Vav and Vav2 are members of the Dbl family of proteins that act as guanine nucleotide exchange factors (GEFs) for Rho family proteins. Whereas Vav expression is restricted to cells of hematopoietic origin, Vav2 is widely expressed. Although Vav and Vav2 share highly related structural similarities and high sequence identity in their Dbl homology domains, it has been reported that they are active GEFs with distinct substrate specificities toward Rho family members. Whereas Vav displayed GEF activity for Rac1, Cdc42, RhoA, and RhoG, Vav2 was reported to exhibit GEF activity for RhoA, RhoB, and RhoG but not for Rac1 or Cdc42. Consistent with their distinct substrate targets, it was found that constitutively activated versions of Vav and Vav2 caused distinct transformed phenotypes when expressed in NIH 3T3 cells. In contrast to the previous findings, we found that Vav2 can act as a potent GEF for Cdc42, Rac1, and RhoA in vitro. Furthermore, we found that NH(2)-terminally truncated and activated Vav and Vav2 caused indistinguishable transforming actions in NIH 3T3 cells that required Cdc42, Rac1, and RhoA function. In addition, like Vav and Rac1, we found that Vav2 activated the Jun NH(2)-terminal kinase cascade and also caused the formation of lamellipodia and membrane ruffles in NIH 3T3 cells. Finally, Vav2-transformed NIH 3T3 cells showed up-regulated levels of Rac-GTP. We conclude that Vav2 and Vav share overlapping downstream targets and are activators of multiple Rho family proteins. Therefore, Vav2 may mediate the same cellular consequences in nonhematopoietic cells as Vav does in hematopoietic cells.  相似文献   

14.
The Dbl family guanine-nucleotide exchange factors (GEFs) for Rho GTPases share the structural array of a Dbl homology (DH) domain in tandem with a Pleckstrin homology (PH) domain. For oncogenic Dbl, the DH domain is responsible for the GEF activity, and the DH-PH module constitutes the minimum structural unit required for cellular transformation. To understand the structure-function relationship of the DH domain, we have investigated the role of specific residues of the DH domain of Dbl in interaction with Rho GTPases and in Dbl-induced transformation. Alanine substitution mutagenesis identified a panel of DH mutants made in the alpha1, alpha6, and alpha9 regions and the PH junction site that suffer complete or partial loss of GEF activity toward Cdc42 and RhoA. Kinetic and binding analysis of these mutants revealed that although most displayed decreased k(cat) values in the GEF reaction, the substrate binding activities of T506A and R634A were significantly reduced. E502A, Q633A, and N673A/D674A, on the other hand, retained the binding capability to the Rho GTPases but lost the GEF catalytic activity. In general, the in vitro GEF activity of the DH mutants correlated with the in vivo Cdc42- and RhoA-activating potential, and the GEF catalytic efficiency mirrored the transforming activity in NIH 3T3 cells. Moreover, the N673A/D674A mutant exhibited a potent dominant-negative effect on serum-induced cell growth and caused retraction of actin structures. These studies identify important sites of the DH domain involved in binding or catalysis of Rho proteins and demonstrate that maintaining a threshold of GEF catalytic activity, in addition to the Rho GTPase binding activity, is essential for efficient transformation by oncogenic Dbl.  相似文献   

15.
16.
Retroviruses induce leukemia in inbred strains of mice by activating cellular proto-oncogenes and/or inactivating tumor suppressors. The proviral integration sites in these leukemias provide powerful genetic tags for disease gene identification. Here we show that Evi24, a common site of retroviral integration in AKXD B cell and BXH-2 myeloid leukemias, contains a novel Dbl family guanine nucleotide exchange factor gene. We have designated this gene Clg (common-site lymphoma/leukemia guanine nucleotide exchange factor). Proviral integrations on chromosome 7 at Evi24 are located 7.6-10.3 kb upstream of Clg and increased Clg expression 2-5-fold compared with leukemias lacking proviral integrations at Evi24. Clg contains Dbl/pleckstrin homology domains with substantial sequence homology to many Rho family activators, including the transforming Dbl and Dbs/Ost oncogenes. Nucleotide exchange assays indicated that Clg specifically activated nucleotide exchange on Cdc42, but not RhoA or Rac1, in vitro. NIH 3T3 transfection studies showed that overexpression of full-length and carboxyl-terminally truncated forms of Clg morphologically transformed NIH 3T3 cells. This study and studies showing that the human homolog of EVI24 is located in a region of 19q13 frequently amplified in B cell lymphomas and pancreatic and breast cancers implicate Clg and Cdc42 activation in mouse and human cancers.  相似文献   

17.
In this paper, we describe the characterization of DEF6, a novel PH-DH-like protein related to SWAP-70 that functions as an upstream activator of Rho GTPases. In NIH 3T3 cells, stimulation of the PI 3-kinase signaling pathway with either H2O2 or platelet-derived growth factor (PDGF) resulted in the translocation of an overexpressed DEF6-GFP fusion protein to the cell membrane and induced the formation of filopodia and lamellipodia. In contrast to full-length DEF6, expression of the DH-like (DHL) domain as a GFP fusion protein potently induced actin polymerization, including stress fiber formation in COS-7 cells, in the absence of PI 3-kinase signaling, indicating that it was constitutively active. The GTP-loading of Cdc42 was strongly enhanced in NIH 3T3 cells expressing the DH domain while filopodia formation, membrane ruffling, and stress fiber formation could be inhibited by the co-expression of the DH domain with dominant negative mutants of either N17Rac1, N17Cdc42, or N19RhoA, respectively. This indicated that DEF6 acts upstream of the Rho GTPases resulting in the activation of the Cdc42, Rac1, and RhoA signaling pathways. In vitro, DEF6 specifically interacted with Rac1, Rac2, Cdc42, and RhoA, suggesting a direct role for DEF6 in the activation of Rho GTPases. The ability of DEF6 to both stimulate actin polymerization and bind to filamentous actin suggests a role for DEF6 in regulating cell shape, polarity, and movement.  相似文献   

18.
The heterotrimeric G-protein G(13) mediates the formation of primitive endoderm from mouse P19 embryonal carcinoma cells in response to retinoic acid, signaling to the level of activation of c-Jun N-terminal kinase. The signal linkage map from MEKK1/MEKK4 to MEK1/MKK4 to JNK is obligate in this G alpha(13)-mediated pathway, whereas that between G alpha(13) and MEKKs is not known. The overall pathway to primitive endoderm formation was shown to be inhibited by treatment with Clostridium botulinum C3 exotoxin, a specific inactivator of RhoA family members. Constitutively active G alpha(13) was found to activate RhoA as well as Cdc42 and Rac1 in these cells. Although constitutively active Cdc42, Rac1, and RhoA all can activate JNK1, only the RhoA mutant was able to promote formation of primitive endoderm, mimicking expression of the constitutively activated G alpha(13). Expression of the constitutively active mutant form of p115RhoGEF (guanine nucleotide exchange factor) was found to activate RhoA and JNK1 activities. Expression of the dominant negative p115RhoGEF was able to inhibit activation of both RhoA and JNK1 in response to either retinoic acid or the expression of a constitutively activated mutant of G alpha(13). Expression of the dominant negative mutants of RhoA as well as those of either Cdc42 or Rac1, but not Ras, attenuated G alpha(13)-stimulated as well as retinoic acid-stimulated activation of all three of these small molecular weight GTPases, suggesting complex interrelationships among the three GTPases in this pathway. The formation of primitive endoderm in response to retinoic acid also could be blocked by expression of dominant negative mutants of RhoA, Cdc42, or Rac1. Thus, the signal propagated from G alpha(13) to JNK requires activation of p115RhoGEF cascades, including p115RhoGEF itself, RhoA, Cdc42, and Rac1. In a concerted effort, RhoA in tandem with Cdc42 and Rac1 activates the MEKK1/4, MEK1/MKK4, and JNK cascade, thereby stimulating formation of primitive endoderm.  相似文献   

19.
20.
Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号