首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land use change alters species' abundance and distributions by affecting habitat availability and quality. The decline of bird populations worldwide is of major concern, and habitat protection and restoration are primary conservation actions. However, conservation decisions largely consider only short-term habitat changes and species’ population dynamics in a given area. Disregarding long term modifications in species’ available habitat, and the role of a given population for a species’ global population may lead to misdirected conservation action. Our goal here was to combine the assessment of conservation responsibility, with that of century-long available habitat dynamics, in order to inform better conservation practice. We compiled available habitat data for 170 bird species in the Carpathian Region from 1860 to 2010 from historic maps and satellite data. We analyzed these species’ range distributions, IUCN extinction risk and population trends, and we identified 29 species of high conservation responsibility, and all of them were forest or and grassland specialists. Furthermore, we found major land use trends including cropland abandonment and increase in forests and grasslands that resulted in increases in potential habitat for the species for which the Carpathians have high conservation responsibility. The loss of row-crop agriculture, on the other hand, reduced habitat for species for which the Carpathians do not have high responsibility, and thus subsidizing agriculture may not be warranted from a conservation perspective. More broadly, many regions worldwide are undergoing rapid land use changes, and we suggest that these should be analyzed relative to a given regions’ conservation responsibility to see if there are opportunities for conservation, i.e., cases similar to the Carpathians, where conservation efforts ‘only’ have to foster current land use trends, and make them permanent, rather than to try to revert the loss of habitat.  相似文献   

2.
Predicting the effect of changes in land-use on bird populations requires a degree of understanding of their population dynamics which is seldom available. Such knowledge is especially difficult to acquire if the birds occupy a variety of habitats of differing quality and they are also migratory. The effects of habitat loss at a particular time of year on the year-round population dynamics are then difficult to predict. The problem is discussed using wintering waders as examples. Unless a species can extend its present range, the initial effect of habitat loss is to increase bird density. Whether this affects population size will depend on whether bird density affects either winter survival or subsequent breeding success. Measuring such density-dependent relationships is in practice extremely difficult in migratory populations. However, behavioural studies help in testing the key hypothesis that birth and death rates are affected by bird density, and may even allow the form of any density-dependent functions to be deduced. Simulation modelling then allows the effects of habitat loss on the overall population dynamics to be explored. The general point is that behavioural studies play an important part in Environmental Impact Studies because behaviour is the main way in which birds respond to environmental changes and compete for limited resources, such as diminishing habitat. They are therefore likely to provide insights when making predictions about the responses of birds and populations to habitat loss.  相似文献   

3.
As global climate changes, there is increasing need to understand how changes in the frequencies of environmental variability affect populations. Age-structured populations have recently been shown to filter specific frequencies of environmental variability, favoring generational frequencies, and very low frequencies, a phenomenon known as cohort resonance. However, there has been little exploration of how changes in the spectra of environmental signals will affect the stability and persistence of age-structured populations. To examine this issue, we analyzed a likely example to show how changes in the frequency of an influential climate phenomenon, the El Niño-Southern Oscillation (ENSO), could affect a marine bird population. We used a density-dependent, age-structured population model to calculate the transfer function (i.e., the frequency-dependent sensitivity) of Brandt’s cormorant (Phalacrocorax penicillatus), a representative marine bird species known to be influenced by ENSO. We then assessed how the population would be affected by ENSO forcing that was doubled and halved in frequency. The transfer function indicated this population is most sensitive to variance at low frequencies, but does not exhibit the sensitivity to generational frequencies (cohort resonance) observed in shorter-lived species. Doubling the frequency of ENSO unexpectedly resulted in higher mean adult population abundance, lower variance, and lower probability of extinction, compared to forcing with the historical or reduced ENSO frequency. Our results illustrate how long-lived species with environmentally driven variability in recruitment, including many species of marine birds and fish, may respond in counterintuitive ways to anticipated changes in environmental variability.  相似文献   

4.
Recent studies show differences in population trends between groups of species occupying different habitats. In Czech birds, as well as in many other European countries, populations of forest species have increased, whereas populations of farmland species have declined. The aim of our study was to test whether population trends of particular species were related to finer bird-habitat associations within farmland and forest birds. We assessed bird-habitat associations using canonical correspondence analysis based on data from a 400 km long transect across the Czech Republic. We calculated population trends of 62 bird species using log-linear models based on data from a large-scale annual monitoring scheme, which covers the time series from 1982 to 2005. Within forest birds, species with a closer association with lowland broad-leaved forest have had more positive population trends, whereas species with a closer association with montane and coniferous forest revealed more negative population trends. We attribute these opposite trends to the gradual replacement of coniferous forests by deciduous ones, which took place in the Czech Republic during recent decades. Our analyses revealed a hump-shaped relationship within farmland birds, species most closely associated with farmland habitat revealing the most negative trends, whereas species with intermediate association to farmland habitat showed the most positive population trends. Such a pattern can be explained by the abandonment of previously cultivated areas followed by the spread of unmanaged meadows and scrubland. Changes in quantity or quality of preferred habitats may thus represent major drivers of observed bird population changes.  相似文献   

5.
Birds are integral to many environmental monitoring schemes. However, there has been little research on the ecological basis of utilizing bird species as indicators of their respective communities and habitats. We used point counts to survey 72 landbird species, 16 of conservation concern, in the Dadia Nature Reserve, Greece, in order to understand the ecology of bird diversity patterns, analyse community composition, identify species characteristic of major vegetation types, and improve long-term management and monitoring protocols. We sampled 36 sites representing 21 vegetation types. Highly heterogeneous sites were the most species rich and rural mosaics (small fields and pastures of low intensity land use, separated by thick hedgerows and tree lines) were twice as rich as intensified crop monocultures. Using multivariate analysis, we found that vegetation cover and height affected the composition of the avifauna. Twenty-one predefined vegetation categories clustered into eight distinct bird habitat types: field crops, rural mosaics, mosaic sites, poplar trees, broadleaved woods, pinewoods, shrubs, and heaths. Ten bird species were highly characteristic of the main bird habitat types in the study area. Our results emphasize the importance of conserving rural mosaics, hedgerows, and openings within forests for landbird conservation in the Mediterranean countryside. We also provide evidence in support of maintaining horizontal heterogeneity at a local scale. Finally, we suggest that monitoring populations of certain indicator bird species can be a cost-effective and efficient way to monitor the state and habitat quality of the entire landbird community, thereby integrating the knowledge of community structure into conservation decision-making.  相似文献   

6.
The response of bird populations to habitat loss   总被引:3,自引:0,他引:3  
Environmental change through altered climate and land use could have a severe impact on bird populations. Predicting the consequences for the size of bird populations is one of the crucial problems for their conservation. We show how a population model based on the behaviour of individuals can be used to predict the consequences of habitat loss. For a wide range of conditions, loss of either wintering or breeding habitat results in population reduction. The approach is then extended to consider the impact of habitat loss in the wintering area on bird species with complex migratory systems. This shows that 'knock-on' effects may occur, so that habitat loss in a wintering area may affect populations which did not initially use that area. The ability to alter migration routes in response to environmental change may be crucial to the future viability of populations. Using a simple model combining genetics and population dynamics, we show that aspects of the biology of a species may affect whether or not its migration strategy is flexible enough to shift in response to habitat change. Some species may be able to adopt new migration routes and avoid the catastrophic consequences of habitat loss in traditional wintering areas; however, other species may lack this flexibility and may suffer severe population declines as a consequence.  相似文献   

7.
A long-standing aim of ecologists is to understand the processes involved in regulating populations. One such mechanism is the buffer effect, where lower quality habitats are increasingly used as a species reaches higher population densities, with a resultant average reduction in fecundity and survival limiting population growth. Although the buffer effect has been demonstrated in populations of a number of species, a test of its importance in influencing population growth rates of multiple species across large spatial scales is lacking. Here, we use habitat-specific population trends for 85 bird species from long-term national monitoring data (the UK Breeding Bird Survey) to examine its generality. We find that both patterns of population change and changes in habitat preference are consistent with the predictions of the buffer effect, providing support for its widespread operation.  相似文献   

8.
Inbreeding depression is known to vary greatly between populations and among species. Some of this variation is due to differences in genetic load between populations, while some is due to differences in the environment (e.g. local weather conditions) or demography of the population (e.g. age structure and breeding experience) in which inbreeding is expressed. Although the effects of these factors in isolation are well understood, there is still relatively little known about the interface between inbreeding on one hand, and environment and demography on the other in wild populations. We examined how environmental and demographic factors mediated the effects of inbreeding in a threatened species of bird. The Stewart Island robin, Petroica australis rakiura, has been subjected to a prolonged bottleneck for over 150 years. A complete pedigree of a reintroduced island population, extending back seven seasons to its founding, was available for analysis along with survival data (at the level of the brood) obtained from intensive monitoring over two breeding seasons. We found no strong support that the degree to which a brood was inbred affected its survival at either the hatching, fledging or recruitment stages. The inbreeding coefficient of the mother did have an effect on brood survival when analysed over all three life history stages, but only as a result of an interaction with female age, with broods of one‐year‐old inbred females suffering greater mortality than those of older inbred females. Although habitat type, temperature, rainfall and year were the best predictors of brood survival for most life history stages, their effects were weak and there were no interactions with inbreeding. Furthermore, there was no strong evidence of inbreeding depression associated with two periods of severe weather. This population is atypical in that inbreeding depression appears to be weak even under severe environmental conditions, and may be indicative that this bottlenecked population has either reduced genetic load or has fixed deleterious alleles.  相似文献   

9.
Many wetland-dependent birds are thought to be experiencing significant population declines, although population trend data for this suite of birds are rare and the causes of declines poorly understood. We used a 26-year dataset (1980–2005) of wetland bird abundance and distribution among 196 wetlands in northeastern Illinois (i.e., Chicago and its suburbs) to evaluate population trends and identify underlying ecological causes. We used aerial photography and GIS to quantify wetland habitat structure (i.e., the extent of emergent vegetation) and changes in surrounding land use. We then evaluated how changes in land use affected the structure of wetlands and ultimately wetland bird populations. Of the 12 species analyzed, seven experienced significant declines, three showed non-significant declines, and two experienced significant increases. Population declines could not be attributed to wetland loss because none of our wetlands were destroyed. Concurrent research at these wetlands also suggests that neither low adult survival nor poor reproductive success were responsible for the declines. Increased development within 2 km of wetlands, however, was associated with extreme changes in the structure of wetlands. Wetlands tended either to lose much of their vegetation and become open ponds, or become rank stands of dense vegetation. Both changes made wetlands less suitable for many wetland birds. While “no net loss” legislation may protect wetlands from being filled or drained, development near wetlands appears to be altering hydrology, resulting in habitat degradation and population declines of several wetland-dependent bird species.  相似文献   

10.
Despite efforts on ecosystem restoration and management, biodiversity loss remains one of the major environmental concerns of our time. Beyond the focus on threatened species, animals that indicate regional biodiversity hotspots and population trends, such as brood parasites, should also be targeted by conservation actions. We studied how reed habitat quality and management influence brood parasitism rate and offspring survival in Common Cuckoos Cuculus canorus parasitizing nests of Great Reed Warblers Acrocephalus arundinaceus in six reed habitats in an intensive agricultural landscape. Data collected from 45 sites over 13 years showed that the brood parasitism rate was highest on large canals and was positively influenced by the availability of potential perches (Cuckoo vantage points) and the height where host nests were built. Cuckoo chick survival decreased with water depth and was not affected by other factors. Our results suggest that the habitat-dependent detectability of host nests was central in brood parasitism rate and that water level was central in Cuckoo chick survival. Our study shows that a maintenance of intermediate water levels is the most optimal for maintaining Cuckoo populations in intensive agricultural landscapes. Because brood parasites are excellent bioindicators as their presence predicts regional hotspots of taxonomic and functional diversity as well as population trends in bird communities, knowledge on their habitat requirements is relevant in management targeting diverse bird communities.  相似文献   

11.
The ecosystems supporting Pacific salmon (Oncorhynchus spp.) are changing rapidly as a result of climate change and habitat alteration. Understanding how—and how consistently—salmon populations respond to changes at regional and watershed scales has major implications for fisheries management and habitat conservation. Chinook salmon (O. tshawytscha) populations across Alaska have declined over the past decade, resulting in fisheries closures and prolonged impacts to local communities. These declines are associated with large‐scale climate drivers, but uncertainty remains about the role of local conditions (e.g., precipitation, streamflow, and stream temperature) that vary among the watersheds where salmon spawn and rear. We estimated the effects of these and other environmental indicators on the productivity of 15 Chinook salmon populations in the Cook Inlet basin, southcentral Alaska, using a hierarchical Bayesian stock‐recruitment model. Salmon spawning during 2003–2007 produced 57% fewer recruits than the previous long‐term average, leading to declines in adult returns beginning in 2008. These declines were explained in part by density dependence, with reduced population productivity following years of high spawning abundance. Across all populations, productivity declined with increased precipitation during the fall spawning and early incubation period and increased with above‐average precipitation during juvenile rearing. Above‐average stream temperatures during spawning and rearing had variable effects, with negative relationships in many warmer streams and positive relationships in some colder streams. Productivity was also associated with regional indices of streamflow and ocean conditions, with high variability among populations. The cumulative effects of adverse conditions in freshwater, including high spawning abundance, heavy fall rains, and hot, dry summers may have contributed to the recent population declines across the region. Identifying both coherent and differential responses to environmental change underscores the importance of targeted, watershed‐specific monitoring and conservation efforts for maintaining resilient salmon runs in a warming world.  相似文献   

12.
Avianspecies assemblages are potential indicators of integrity and stability of ecosystem structure and functions. Characteristic avian fauna in landscapes enable predictions about the environmental state and possible deviations in the ecosystem functions. Documentation of avian species assemblages in different landscapes are therefore being emphasized from environmental monitoring perspective. As a primary effort, the present commentary depicts the avian species assemblage of agricultural landscapes, using Burdwan, West Bengal, India, as a study area. Employing line-transect method of continuous survey and opportunistic encounter, a total of 144 bird species under 51 families and 19 orders were recorded from the study area. The avian species richness was highest for the order Passeriformes followed by Charadriidae and rest 17 orders. Resident, local migrant and migrant species constituted 61.15, 31.65 and 7.20 % of the bird community, respectively. Most of the bird species (51.85 %) were associated consistently with the agricultural fields as their habitat followed by aquatic systems (29.20 %) and human habitat (18.98 %). The study records the presence of three species under IUCN Near Threatened category and many species exhibiting sparse population based on the encounter rate and number of individuals in the habitat. The observed richness of bird species in the study area calls for further studies on habitat preference, census and breeding biology to highlight species specific roles in ecosystem functions and sustenance of ecosystem services.  相似文献   

13.

Background

Urbanization is a major cause of habitat fragmentation worldwide. Ecological and conservation theory predicts many potential impacts of habitat fragmentation on natural populations, including genetic impacts. Habitat fragmentation by urbanization causes populations of animals and plants to be isolated in patches of suitable habitat that are surrounded by non-native vegetation or severely altered vegetation, asphalt, concrete, and human structures. This can lead to genetic divergence between patches and in turn to decreased genetic diversity within patches through genetic drift and inbreeding.

Methodology/Principal Findings

We examined population genetic patterns using microsatellites in four common vertebrate species, three lizards and one bird, in highly fragmented urban southern California. Despite significant phylogenetic, ecological, and mobility differences between these species, all four showed similar and significant reductions in gene flow over relatively short geographic and temporal scales. For all four species, the greatest genetic divergence was found where development was oldest and most intensive. All four animals also showed significant reduction in gene flow associated with intervening roads and freeways, the degree of patch isolation, and the time since isolation.

Conclusions/Significance

Despite wide acceptance of the idea in principle, evidence of significant population genetic changes associated with fragmentation at small spatial and temporal scales has been rare, even in smaller terrestrial vertebrates, and especially for birds. Given the striking pattern of similar and rapid effects across four common and widespread species, including a volant bird, intense urbanization may represent the most severe form of fragmentation, with minimal effective movement through the urban matrix.  相似文献   

14.
As part of an overall "biodiversity crisis" many amphibian populations are in decline throughout the world. Numerous causes have been invoked to explain these declines. These include habitat destruction, climate change, increasing levels of ultraviolet radiation, environmental contamination, disease, and the introduction of non-native species. In this paper, we argue that amphibian population declines are caused by different abiotic and biotic factors acting together in a context-dependent fashion. Moreover, different species and different populations of the same species may react in different ways to the same environmental insult. Thus, the causes of amphibian population declines will vary spatially and temporally. Although some generalizations (e.g. those concerning environmental stress and disease outbreaks) can be made about amphibian population declines, we suggest that these generalizations take into account the context-dependent dynamics of ecological systems.  相似文献   

15.
In this study I assess the statistical power to detect a significantly greater increase in bird population size on treatment farms than on control farms given that there is a substantial treatment effect. Computer simulations of bird populations on New?Zealand sheep/beef farms were used to generate significant changes in bird abundance from (a) controlling predation by introduced small mammals, (b) habitat structural complexity, and (c) an interaction of both. A simplified computer model of bird population dynamics was developed that predicted a birth pulse of 357% when predators were controlled and 110% if not, and a target of detecting the experimental elevation of bird abundance at a statistically significant level (P 相似文献   

16.

Background

The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity.

Methodology/Principal Findings

Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km2). Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra.

Conclusion/Significance

If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.  相似文献   

17.
Monitoring programs designed to assess changes in population size over time need to account for imperfect detection and provide estimates of precision around annual abundance estimates. Especially for species dependent on conservation management, robust monitoring is essential to evaluate the effectiveness of management. Many bird species of temperate grasslands depend on specific conservation management to maintain suitable breeding habitat. One such species is the Aquatic Warbler (Acrocephalus paludicola), which breeds in open fen mires in Central Europe. Aquatic Warbler populations have so far been assessed using a complete survey that aims to enumerate all singing males over a large area. Because this approach provides no estimate of precision and does not account for observation error, detecting moderate population changes is challenging. From 2011 to 2013 we trialled a new line transect sampling monitoring design in the Biebrza valley, Poland, to estimate abundance of singing male Aquatic Warblers. We surveyed Aquatic Warblers repeatedly along 50 randomly placed 1-km transects, and used binomial mixture models to estimate abundances per transect. The repeated line transect sampling required 150 observer days, and thus less effort than the traditional ‘full count’ approach (175 observer days). Aquatic Warbler abundance was highest at intermediate water levels, and detection probability varied between years and was influenced by vegetation height. A power analysis indicated that our line transect sampling design had a power of 68% to detect a 20% population change over 10 years, whereas raw count data had a 9% power to detect the same trend. Thus, by accounting for imperfect detection we increased the power to detect population changes. We recommend to adopt the repeated line transect sampling approach for monitoring Aquatic Warblers in Poland and in other important breeding areas to monitor changes in population size and the effects of habitat management.  相似文献   

18.
1. Biological monitoring is vital to river conservation. Aside from providing census data, regular monitoring may detect population trends that reflect the degradation or remediation of riverine environments. Birds are major candidates for this purpose because of their connections to riverine food webs and river habitat features. However, much information on factors affecting river bird distributions is qualitative. 2. River bird populations have been surveyed annually in the U.K. since 1974. The value of this monitoring could be increased if links between population trends and changes in riverine landscapes or channel hydromorphology were better understood. We modelled the relationships between bird species’ distributions recorded by the British Trust for Ornithology's Waterways Breeding Bird Survey (WBBS) and hydromorphology recorded by the Environment Agency's River Habitat Survey (RHS). 3. Regression models were built for 20 bird species associated with the river channel and neighbouring floodplains. This provided one of the first illustrations in ecology of generalized estimating equations (GEEs) for extending generalized linear models to instances where individual observations are not statistically independent. GEEs could offer a range of benefits to freshwater biologists, as they are a simple approach to analysing hierarchical, correlated data while maintaining the ease of interpretation with a range of link functions and data types. 4. Upland, fast water species and reedbed specialists showed the closest links with RHS, followed by lowland, slow water species, where correlations to RHS varied widely in magnitude. The distributions of floodplain wading birds were poorly modelled by RHS, suggesting that floodplain land uses as quantified by RHS were poor predictors of distributions. Marked preferences between upland and lowland channels were evident for most species. Specific features were also important, including hydraulics, bank/channel vegetation, depositional features and anthropogenic structures. 5. Monitoring the abundance and distribution of a range of bird species, with a diversity of life histories, could be a valuable tool for assessing trends in riverine landscapes and whole river basins. RHS captures useful information about channel hydromorphology and vegetation, but needs supplementing with additional environmental information to describe (i) the wider riverine landscape (e.g. more detailed floodplain variables, proximity of other waterbodies) and (ii) water chemistry. Although further work is required, this study suggests that WBBS and RHS add mutual value in appraising the river environment. We advocate the further development of birds as indicators in riverine landscapes that could convey the importance of the ecological integrity, biological production and conservation value of river systems to a wider audience.  相似文献   

19.
Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high‐quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high‐quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution.  相似文献   

20.
It has been suggested that increased predation rates may rival habitat alteration as a causal agent in farmland bird population declines. Such a view may be over-simplistic, however, as changes in habitat structure may influence habitat selection and foraging efficiency through their influence on perceived and actual predation risk. We review evidence from the literature on the effects of habitat structure on predation risk of foraging and nesting birds and apply these principles to investigate the likely effects on the 20 species that comprise the UK Government's 'Farmland Bird Index'. Shorter vegetation is likely to enhance foraging efficiency and reduce predation risk (when ground foraging) for 15 of the 20 species. However, within grassland systems longer vegetation is known to enhance food supplies (e.g. Tipulid larvae and voles) of several farmland bird species and so mosaics of short and long vegetation may provide the optimum conditions for most species (e.g. Lapwing Vanellus vanellus , Starling Sturnus vulgaris , Barn Owl Tyto alba ). Agricultural intensification has encouraged uniform dense swards, thus reducing habitat diversity, and agri-environment schemes that provide heterogeneous sward structure may thus facilitate farmland bird conservation. Intensification has also resulted in less dense hedgerows; although a reversal of this trend may improve foraging efficiency for many species, it may be detrimental to a smaller number of species that prefer shorter, less dense hedges for nesting. Before these tentative conclusions can be confirmed, more research is required that considers how the effects of habitat structure on individuals is likely to translate into population-level impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号